9,375 research outputs found

    Intelligent composite layup by the application of low cost tracking and projection technologies

    Get PDF
    Hand layup is still the dominant forming process for the creation of the widest range of complex geometry and mixed material composite parts. However, this process is still poorly understood and informed, limiting productivity. This paper seeks to address this issue by proposing a novel and low cost system enabling a laminator to be guided in real-time, based on a predetermined instruction set, thus improving the standardisation of produced components. Within this paper the current methodologies are critiqued and future trends are predicted, prior to introducing the required input and outputs, and developing the implemented system. As a demonstrator a U-Shaped component typical of the complex geometry found in many difficult to manufacture composite parts was chosen, and its drapeability assessed by the use of a kinematic drape simulation tool. An experienced laminator's knowledgebase was then used to divide the tool into a finite number of features, with layup conducted by projecting and sequentially highlighting target features while tracking a laminator's hand movements across the ply. The system has been implemented with affordable hardware and demonstrates tangible benefits in comparison to currently employed laser-based systems. It has shown remarkable success to date, with rapid Technology Readiness Level advancement. This is a major stepping stone towards augmenting manual labour, with further benefits including more appropriate automation

    Essentials of Augmented Reality Software Development under Android Patform

    Get PDF
    Liitreaalsus on üha enam arenev tehnoloogia. Lisaks meelelahutuseleon liitreaalsus leidnud kasutust nii meditsiinis, sõjaväes, masinaehituses kui ka teistes suurtes ettevõtluse ning riigiga seotud valdkondades. Arendusmeeskondade eesmärk on saavutada võimalikult hea jõudlus ning visuaalsed tulemused nende poolt toodetavas tarkvaras sõltumata kasutuspiirkonnast. Liitreaalsuse tarkvara põhitehnoloogia sõltub vägapalju meeskonnale kättesaadavatest ressurssidest. See tähendab, et paremate võimalustega organisatsioonid saavad lubada endale tipptehnoloogiaid ning oma arendusmeeskondi, mille abil on neil võimalus implementeerida uusi liitreaalsuse tarkvaralahendusi. Samal ajal on aga tavalised firmad piiratud aja, meeskonna ja raha poolest, mis omakorda sunnib neid kasutama turul olemasolevaid lahendusi - tööriistakomplekte.Sellest lähtuvalt keskendub käesolev töö vajalikele teadmistele, mida läheb vaja erinevate liitreaalsuse tööriistakomplektide kasutamisel. Selleks, et luua edukalt valmis liitreaalsuse tarkvara, on välja valitud kindlad raamistikud, millest koostatakse ülevaade, mida testitakse ning võrreldakse. Lisaks sellele õpetatakse uurimise käigus selgeks ka mõned põhiteadmised liitreaalsuse arendamiseks Androidi platvormi näitel.Augmented Reality (AR) is an emerging technology. Besides entertainment, AR also is found to be used in medicine, military, engineering and other major fields of enterprise and government. Regardless of the application area, development teams usually target to achieve best performance and visual results in the AR software that they are providing. In addition, the core technology used behind a particular AR software depends a lot on resources available to the team. This means, that organizations with large resources can afford to implement AR software solutions using cutting-edge technologies build by their own engineering units, whereas ordinary companies are usually limited in time, staff and budget. Hence, forcing them to use existing market solutions - toolkits.From this perspective, this thesis work focuses on providing the basics of working with AR toolkits. In order to succeed in building an AR software, particular toolkits are selected to be reviewed, tested and compared. Moreover, during the investigation process some essentials of the AR development under Android platform are also studied

    ISAR: Ein Autorensystem für Interaktive Tische

    Get PDF
    Developing augmented reality systems involves several challenges, that prevent end users and experts from non-technical domains, such as education, to experiment with this technology. In this research we introduce ISAR, an authoring system for augmented reality tabletops targeting users from non-technical domains. ISAR allows non-technical users to create their own interactive tabletop applications and experiment with the use of this technology in domains such as educations, industrial training, and medical rehabilitation.Die Entwicklung von Augmented-Reality-Systemen ist mit mehreren Herausforderungen verbunden, die Endbenutzer und Experten aus nicht-technischen Bereichen, wie z.B. dem Bildungswesen, daran hindern, mit dieser Technologie zu experimentieren. In dieser Forschung stellen wir ISAR vor, ein Autorensystem für Augmented-Reality-Tabletops, das sich an Benutzer aus nicht-technischen Bereichen richtet. ISAR ermöglicht es nicht-technischen Anwendern, ihre eigenen interaktiven Tabletop-Anwendungen zu erstellen und mit dem Einsatz dieser Technologie in Bereichen wie Bildung, industrieller Ausbildung und medizinischer Rehabilitation zu experimentieren

    Vision based 3D Gesture Tracking using Augmented Reality and Virtual Reality for Improved Learning Applications

    Get PDF
    3D gesture recognition and tracking based augmented reality and virtual reality have become a big interest of research because of advanced technology in smartphones. By interacting with 3D objects in augmented reality and virtual reality, users get better understanding of the subject matter where there have been requirements of customized hardware support and overall experimental performance needs to be satisfactory. This research investigates currently various vision based 3D gestural architectures for augmented reality and virtual reality. The core goal of this research is to present analysis on methods, frameworks followed by experimental performance on recognition and tracking of hand gestures and interaction with virtual objects in smartphones. This research categorized experimental evaluation for existing methods in three categories, i.e. hardware requirement, documentation before actual experiment and datasets. These categories are expected to ensure robust validation for practical usage of 3D gesture tracking based on augmented reality and virtual reality. Hardware set up includes types of gloves, fingerprint and types of sensors. Documentation includes classroom setup manuals, questionaries, recordings for improvement and stress test application. Last part of experimental section includes usage of various datasets by existing research. The overall comprehensive illustration of various methods, frameworks and experimental aspects can significantly contribute to 3D gesture recognition and tracking based augmented reality and virtual reality.Peer reviewe

    Smart augmented reality instructional system for mechanical assembly

    Get PDF
    Quality and efficiency are pivotal indicators of a manufacturing company. Many companies are suffering from shortage of experienced workers across the production line to perform complex assembly tasks such as assembly of an aircraft engine. This could lead to a significant financial loss. In order to further reduce time and error in an assembly, a smart system consisting of multi-modal Augmented Reality (AR) instructions with the support of a deep learning network for tool detection is introduced. The multi-modal smart AR is designed to provide on-site information including various visual renderings with a fine-tuned Region-based Convolutional Neural Network, which is trained on a synthetic tool dataset. The dataset is generated using CAD models of tools augmented onto a 2D scene without the need of manually preparing real tool images. By implementing the system to mechanical assembly of a CNC carving machine, the result has shown that the system is not only able to correctly classify and localize the physical tools but also enables workers to successfully complete the given assembly tasks. With the proposed approaches, an efficiently customizable smart AR instructional system capable of sensing, characterizing the requirements, and enhancing worker\u27s performance effectively has been built and demonstrated --Abstract, page iii

    Configurable Input Devices for 3D Interaction using Optical Tracking

    Get PDF
    Three-dimensional interaction with virtual objects is one of the aspects that needs to be addressed in order to increase the usability and usefulness of virtual reality. Human beings have difficulties understanding 3D spatial relationships and manipulating 3D user interfaces, which require the control of multiple degrees of freedom simultaneously. Conventional interaction paradigms known from the desktop computer, such as the use of interaction devices as the mouse and keyboard, may be insufficient or even inappropriate for 3D spatial interaction tasks. The aim of the research in this thesis is to develop the technology required to improve 3D user interaction. This can be accomplished by allowing interaction devices to be constructed such that their use is apparent from their structure, and by enabling efficient development of new input devices for 3D interaction. The driving vision in this thesis is that for effective and natural direct 3D interaction the structure of an interaction device should be specifically tuned to the interaction task. Two aspects play an important role in this vision. First, interaction devices should be structured such that interaction techniques are as direct and transparent as possible. Interaction techniques define the mapping between interaction task parameters and the degrees of freedom of interaction devices. Second, the underlying technology should enable developers to rapidly construct and evaluate new interaction devices. The thesis is organized as follows. In Chapter 2, a review of the optical tracking field is given. The tracking pipeline is discussed, existing methods are reviewed, and improvement opportunities are identified. In Chapters 3 and 4 the focus is on the development of optical tracking techniques of rigid objects. The goal of the tracking method presented in Chapter 3 is to reduce the occlusion problem. The method exploits projection invariant properties of line pencil markers, and the fact that line features only need to be partially visible. In Chapter 4, the aim is to develop a tracking system that supports devices of arbitrary shapes, and allows for rapid development of new interaction devices. The method is based on subgraph isomorphism to identify point clouds. To support the development of new devices in the virtual environment an automatic model estimation method is used. Chapter 5 provides an analysis of three optical tracking systems based on different principles. The first system is based on an optimization procedure that matches the 3D device model points to the 2D data points that are detected in the camera images. The other systems are the tracking methods as discussed in Chapters 3 and 4. In Chapter 6 an analysis of various filtering and prediction methods is given. These techniques can be used to make the tracking system more robust against noise, and to reduce the latency problem. Chapter 7 focusses on optical tracking of composite input devices, i.e., input devices 197 198 Summary that consist of multiple rigid parts that can have combinations of rotational and translational degrees of freedom with respect to each other. Techniques are developed to automatically generate a 3D model of a segmented input device from motion data, and to use this model to track the device. In Chapter 8, the presented techniques are combined to create a configurable input device, which supports direct and natural co-located interaction. In this chapter, the goal of the thesis is realized. The device can be configured such that its structure reflects the parameters of the interaction task. In Chapter 9, the configurable interaction device is used to study the influence of spatial device structure with respect to the interaction task at hand. The driving vision of this thesis, that the spatial structure of an interaction device should match that of the task, is analyzed and evaluated by performing a user study. The concepts and techniques developed in this thesis allow researchers to rapidly construct and apply new interaction devices for 3D interaction in virtual environments. Devices can be constructed such that their spatial structure reflects the 3D parameters of the interaction task at hand. The interaction technique then becomes a transparent one-to-one mapping that directly mediates the functions of the device to the task. The developed configurable interaction devices can be used to construct intuitive spatial interfaces, and allow researchers to rapidly evaluate new device configurations and to efficiently perform studies on the relation between the spatial structure of devices and the interaction task
    corecore