8,711 research outputs found

    Fast Reliable Ray-tracing of Procedurally Defined Implicit Surfaces Using Revised Affine Arithmetic

    Get PDF
    Fast and reliable rendering of implicit surfaces is an important area in the field of implicit modelling. Direct rendering, namely ray-tracing, is shown to be a suitable technique for obtaining good-quality visualisations of implicit surfaces. We present a technique for reliable ray-tracing of arbitrary procedurally defined implicit surfaces by using a modification of Affine Arithmetic called Revised Affine Arithmetic. A wide range of procedurally defined implicit objects can be rendered using this technique including polynomial surfaces, constructive solids, pseudo-random objects, procedurally defined microstructures, and others. We compare our technique with other reliable techniques based on Interval and Affine Arithmetic to show that our technique provides the fastest, while still reliable, ray-surface intersections and ray-tracing. We also suggest possible modifications for the GPU implementation of this technique for real-time rendering of relatively simple implicit models and for near real-time for complex implicit models

    Fast reliable interrogation of procedurally defined implicit surfaces using extended revised affine arithmetic.

    Get PDF
    Techniques based on interval and previous termaffine arithmetic next term and their modifications are shown to provide previous term reliable next term function range evaluation for the purposes of previous termsurface interrogation.next term In this paper we present a technique for the previous termreliable interrogation of implicit surfacesnext term using a modification of previous termaffine arithmeticnext term called previous term revised affine arithmetic.next term We extend the range of functions presented in previous termrevised affine arithmeticnext term by introducing previous termaffinenext term operations for arbitrary functions such as set-theoretic operations with R-functions, blending and conditional operators. The obtained previous termaffinenext term forms of arbitrary functions provide previous termfasternext term and tighter function range evaluation. Several case studies for operations using previous termaffinenext term forms are presented. The proposed techniques for previous termsurface interrogationnext term are tested using ray-previous termsurfacenext term intersection for ray-tracing and spatial cell enumeration for polygonisation. These applications with our extensions provide previous termfast and reliablenext term rendering of a wide range of arbitrary previous termprocedurally defined implicit surfacesnext term (including polynomial previous termsurfaces,next term constructive solids, pseudo-random objects, previous termprocedurally definednext term microstructures, and others). We compare the function range evaluation technique based on previous termextended revised affine arithmeticnext term with other previous termreliablenext term techniques based on interval and previous termaffine arithmeticnext term to show that our technique provides the previous termfastestnext term and tightest function range evaluation for previous termfast and reliable interrogation of procedurally defined implicit surfaces.next term Research Highlights The main contributions of this paper are as follows. ► The widening of the scope of previous termreliablenext term ray-tracing and spatial enumeration algorithms for previous termsurfacesnext term ranging from algebraic previous termsurfaces (definednext term by polynomials) to general previous termimplicit surfaces (definednext term by function evaluation procedures involving both previous termaffinenext term and non-previous termaffinenext term operations based on previous termrevised affine arithmetic)next term. ► The introduction of a technique for representing procedural models using special previous termaffinenext term forms (illustrated by case studies of previous termaffinenext term forms for set-theoretic operations in the form of R-functions, blending operations and conditional operations). ► The detailed derivation of special previous termaffinenext term forms for arbitrary operators

    Ray casting implicit fractal surfaces with reduced affine arithmetic

    Get PDF
    A method is presented for ray casting implicit surfaces defined by fractal combinations of procedural noise functions. The method is robust and uses affine arithmetic to bound the variation of the implicit function along a ray. The method is also efficient due to a modification in the affine arithmetic representation that introduces a condensation step at the end of every non-affine operation. We show that our method is able to retain the tight estimation capabilities of affine arithmetic for ray casting implicit surfaces made from procedural noise functions while being faster to compute and more efficient to store

    Motivic generating series for toric surface singularities

    Full text link
    Lejeune-Jalabert and Reguera computed the geometric Poincare series P_{geom}(T) for toric surface singularities. They raise the question whether this series equals the arithmetic Poincare series. We prove this equality for a class of toric varieties including the surfaces, and construct a counterexample in the general case. We also compute the motivic Igusa Poincare series Q_{geom}(T) for toric surface singularities, using the change of variables formula for motivic integrals, thus answering a second question of Lejeune-Jalabert and Reguera's. The series Q_{geom}(T) contains more information than the geometric series, since it determines the multiplicity of the singularity. In some sense, this is the only difference between Q_{geom}(T) and P_{geom}(T).Comment: 18 page
    corecore