27,958 research outputs found

    Berry's phase for compact Lie groups

    Get PDF
    The Lie group adiabatic evolution determined by a Lie algebra parameter dependent Hamiltonian is considered. It is demonstrated that in the case when the parameter space of the Hamiltonian is a homogeneous K\"ahler manifold its fundamental K\"ahler potentials completely determine Berry geometrical phase factor. Explicit expressions for Berry vector potentials (Berry connections) and Berry curvatures are obtained using the complex parametrization of the Hamiltonian parameter space. A general approach is exemplified by the Lie algebra Hamiltonians corresponding to SU(2) and SU(3) evolution groups.Comment: 24 pages, no figure

    Quantum Geometry of 3-Dimensional Lattices and Tetrahedron Equation

    Full text link
    We study geometric consistency relations between angles of 3-dimensional (3D) circular quadrilateral lattices -- lattices whose faces are planar quadrilaterals inscribable into a circle. We show that these relations generate canonical transformations of a remarkable "ultra-local" Poisson bracket algebra defined on discrete 2D surfaces consisting of circular quadrilaterals. Quantization of this structure allowed us to obtain new solutions of the tetrahedron equation (the 3D analog of the Yang-Baxter equation) as well as reproduce all those that were previously known. These solutions generate an infinite number of non-trivial solutions of the Yang-Baxter equation and also define integrable 3D models of statistical mechanics and quantum field theory. The latter can be thought of as describing quantum fluctuations of lattice geometry.Comment: Plenary talk at the XVI International Congress on Mathematical Physics, 3-8 August 2009, Prague, Czech Republi

    Statistical Equilibrium in Quantum Gravity: Gibbs states in Group Field Theory

    Full text link
    Gibbs states are known to play a crucial role in the statistical description of a system with a large number of degrees of freedom. They are expected to be vital also in a quantum gravitational system with many underlying fundamental discrete degrees of freedom. However, due to the absence of well-defined concepts of time and energy in background independent settings, formulating statistical equilibrium in such cases is an open issue. This is even more so in a quantum gravity context that is not based on any of the usual spacetime structures, but on non-spatiotemporal degrees of freedom. In this paper, after having clarified general notions of statistical equilibrium, on which two different construction procedures for Gibbs states can be based, we focus on the group field theory formalism for quantum gravity, whose technical features prove advantageous to the task. We use the operator formulation of group field theory to define its statistical mechanical framework, based on which we construct three concrete examples of Gibbs states. The first is a Gibbs state with respect to a geometric volume operator, which is shown to support condensation to a low-spin phase. This state is not based on a pre-defined symmetry of the system and its construction is via Jaynes' entropy maximisation principle. The second are Gibbs states encoding structural equilibrium with respect to internal translations on the GFT base manifold, and defined via the KMS condition. The third are Gibbs states encoding relational equilibrium with respect to a clock Hamiltonian, obtained by deparametrization with respect to coupled scalar matter fields.Comment: v2 31 pages; typos corrected; section 2 modified substantially for clarity; minor modifications in the abstract and introduction; arguments and results unchange

    Geometric flows and (some of) their physical applications

    Full text link
    The geometric evolution equations provide new ways to address a variety of non-linear problems in Riemannian geometry, and, at the same time, they enjoy numerous physical applications, most notably within the renormalization group analysis of non-linear sigma models and in general relativity. They are divided into classes of intrinsic and extrinsic curvature flows. Here, we review the main aspects of intrinsic geometric flows driven by the Ricci curvature, in various forms, and explain the intimate relation between Ricci and Calabi flows on Kahler manifolds using the notion of super-evolution. The integration of these flows on two-dimensional surfaces relies on the introduction of a novel class of infinite dimensional algebras with infinite growth. It is also explained in this context how Kac's K_2 simple Lie algebra can be used to construct metrics on S^2 with prescribed scalar curvature equal to the sum of any holomorphic function and its complex conjugate; applications of this special problem to general relativity and to a model of interfaces in statistical mechanics are also briefly discussed.Comment: 18 pages, contribution to AvH conference Advances in Physics and Astrophysics of the 21st Century, 6-11 September 2005, Varna, Bulgari

    Quantum geometry of 3-dimensional lattices

    Full text link
    We study geometric consistency relations between angles on 3-dimensional (3D) circular quadrilateral lattices -- lattices whose faces are planar quadrilaterals inscribable into a circle. We show that these relations generate canonical transformations of a remarkable ``ultra-local'' Poisson bracket algebra defined on discrete 2D surfaces consisting of circular quadrilaterals. Quantization of this structure leads to new solutions of the tetrahedron equation (the 3D analog of the Yang-Baxter equation). These solutions generate an infinite number of non-trivial solutions of the Yang-Baxter equation and also define integrable 3D models of statistical mechanics and quantum field theory. The latter can be thought of as describing quantum fluctuations of lattice geometry. The classical geometry of the 3D circular lattices arises as a stationary configuration giving the leading contribution to the partition function in the quasi-classical limit.Comment: 27 pages, 10 figures. Minor corrections, references adde

    The locally covariant Dirac field

    Full text link
    We describe the free Dirac field in a four dimensional spacetime as a locally covariant quantum field theory in the sense of Brunetti, Fredenhagen and Verch, using a representation independent construction. The freedom in the geometric constructions involved can be encoded in terms of the cohomology of the category of spin spacetimes. If we restrict ourselves to the observable algebra the cohomological obstructions vanish and the theory is unique. We establish some basic properties of the theory and discuss the class of Hadamard states, filling some technical gaps in the literature. Finally we show that the relative Cauchy evolution yields commutators with the stress-energy-momentum tensor, as in the scalar field case.Comment: 36 pages; v2 minor changes, typos corrected, updated references and acknowledgement

    Holography and SL(2,\bR) symmetry in 2D Rindler spacetime

    Get PDF
    It is shown that it is possible to define quantum field theory of a massless scalar free field on the Killing horizon of a 2D-Rindler spacetime. Free quantum field theory on the horizon enjoys diffeomorphism invariance and turns out to be unitarily and algebraically equivalent to the analogous theory of a scalar field propagating inside Rindler spacetime, nomatter the value of the mass of the field in the bulk. More precisely, there exists a unitary transformation that realizes the bulk-boundary correspondence under an appropriate choice for Fock representation spaces. Secondly, the found correspondence is a subcase of an analogous algebraic correspondence described by injective *-homomorphisms of the abstract algebras of observables generated by abstract quantum free-field operators. These field operators are smeared with suitable test functions in the bulk and exact 1-forms on the horizon. In this sense the correspondence is independent from the chosen vacua. It is proven that, under that correspondence the ``hidden'' SL(2,\bR) quantum symmetry found in a previous work gets a clear geometric meaning, it being associated with a group of diffeomorphisms of the horizon itself.Comment: Title changed, further minor changes, references added, accepted for publication in J. Math. Phy
    • 

    corecore