158,975 research outputs found

    Surface Detection using Round Cut

    Get PDF

    Fv antibodies to aflatoxin B1 derived from a pre-immunized antibody phage display library system

    Get PDF
    The production and characterization of recombinant antibodies to aflatoxin B[SUB1] (AFB[SUB1]), a potent mycotoxin and carcinogen is described. The antibody fragments produced were then applied for use in a surface plasmon resonance-based biosensor (BIAcore), which measures biomolecular interactions in 'real-time'. Single chain Fv (scFv) antibodies were generated to aflatoxin B1 from an established phage display system, which incorporated a range of different plasmids for efficient scFv expression. The scFv's were used in the development of a competitive ELISA, and also for the development of surface plasmon resonance (SPR)-based inhibition immunoassays. They were found to be suitable for the detection of AFB[SUB1], in this format, with the assays being sensitive and reproducible

    Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures

    Full text link
    Quantum computers have recently made great strides and are on a long-term path towards useful fault-tolerant computation. A dominant overhead in fault-tolerant quantum computation is the production of high-fidelity encoded qubits, called magic states, which enable reliable error-corrected computation. We present the first detailed designs of hardware functional units that implement space-time optimized magic-state factories for surface code error-corrected machines. Interactions among distant qubits require surface code braids (physical pathways on chip) which must be routed. Magic-state factories are circuits comprised of a complex set of braids that is more difficult to route than quantum circuits considered in previous work [1]. This paper explores the impact of scheduling techniques, such as gate reordering and qubit renaming, and we propose two novel mapping techniques: braid repulsion and dipole moment braid rotation. We combine these techniques with graph partitioning and community detection algorithms, and further introduce a stitching algorithm for mapping subgraphs onto a physical machine. Our results show a factor of 5.64 reduction in space-time volume compared to the best-known previous designs for magic-state factories.Comment: 13 pages, 10 figure

    Capillary electrophoresis characterisation of a rapid prototyped PMMA chip for particle analysis

    Get PDF
    Màster en Nanociència i NanotecnologiaA rapid and cheap method has been developed for the fabrication of a capillary electrophoresis chip for the preliminary characterization of particles. The microfluidic chips were fabricated using polymethyl methacrylate (PMMA) with integrated platinum electrodes without the need of using high technology microfabrication techniques. The chips were characterized using electroosmotic flow (EOF) with different channel treatments. The electrodes were characterised with impedance and conductivity measurements using both static and electrophoretic flow, respectively. Nine micron diameter particles were detected and their electrophoretic mobility determined using capillary electrophoresis and conductivity detection

    Star Cluster Candidates in M81

    Full text link
    We present a catalog of extended objects in the vicinity of M81 based a set of 24 Hubble Space Telescope Advanced Camera for Surveys (ACS) Wide Field Camera (WFC) F814W (I-band) images. We have found 233 good globular cluster candidates; 92 candidate HII regions, OB associations, or diffuse open clusters; 489 probable background galaxies; and 1719 unclassified objects. We have color data from ground-based g- and r-band MMT Megacam images for 79 galaxies, 125 globular cluster candidates, 7 HII regions, and 184 unclassified objects. The color-color diagram of globular cluster candidates shows that most fall into the range 0.25 < g-r < 1.25 and 0.5 < r-I < 1.25, similar to the color range of Milky Way globular clusters. Unclassified objects are often blue, suggesting that many of them are likely to be HII regions and open clusters, although a few galaxies and globular clusters may be among them.Comment: 35 pages, 11 figures, submitted to A

    Structured Light-Based 3D Reconstruction System for Plants.

    Get PDF
    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance

    Probing Galaxy Dark Matter Haloes in COSMOS with Weak Lensing Flexion

    Get PDF
    Current theories of structure formation predict specific density profiles of galaxy dark matter haloes, and with weak gravitational lensing we can probe these profiles on several scales. On small scales, higher-order shape distortions known as flexion add significant detail to the weak lensing measurements. We present here the first detection of a galaxy-galaxy flexion signal in space-based data, obtained using a new Shapelets pipeline introduced here. We combine this higher-order lensing signal with shear to constrain the average density profile of the galaxy lenses in the Hubble Space Telescope COSMOS survey. We also show that light from nearby bright objects can significantly affect flexion measurements. After correcting for the influence of lens light, we show that the inclusion of flexion provides tighter constraints on density profiles than does shear alone. Finally we find an average density profile consistent with an isothermal sphere.Comment: 14 pages, 14 figures. Accepted for publication in MNRA

    Microbiological, Thermal Inactivation, and Sensory Characteristics of Beef Eye-of-Round Subprimals and Steaks Processed with High-Pressure Needleless Injection

    Get PDF
    High-pressure needleless injection (HPNI) is a process where small-diameter, high-velocity burst of liquid, penetrate foods at pressures ≤ 10,000 psi. The potential of HPNI as an enhancing technique for meat was studied. In study 1, HPNI translocated surface E. coli O157 into the interior of beef eye-of-round subprimals with an incidence of 40 (±7), 25 (±8), and 25 (±8)% for meat that had been surface-inoculated with a four-strain cocktail at 0.5, 1, and 2 log10 CFU/cm2, respectively. Run-off water contained 2, 2, and 3 log10 CFU/ml and was used for HPNI of additional subprimals, which resulted in a cross-contamination incidence of 83 (±4), 60 (±15), and 37 (±6) %, respectively. Incidence of translocation and cross-contamination was similar at all sampled levels below the inoculated surface. Study 1 results indicate that surface microflora will be translocated from the surface into the interior of HPNI-treated beef by the injection fluid and by cross-contamination with recycled fluid. In study 2, E. coli was undetected in cooked steaks (63˚C internal) cut from subprimals inoculated with 2 log10 CFU/cm2 and HPNI processed (study 1). Although cooking reduced E. coli counts, determination of complete kill was not possible because the detection limit for bacterial recovery was about 1 log10 CFU/g. Steaks cut from HPNI-processed subprimals took longer (p In study 3, sensory acceptance of steaks was evaluated by a consumer panel. Appearance, flavor, and overall acceptance were similar among the untreated control, HPNI steaks, blade tenderized steaks (BT steaks), and steaks cut from subprimals that had been needle-injected with 0.35% (wt/vol) sodium tripolyphosphate using needle injection (NI-subprimal steaks) or HPNI (HPNI-subprimal steaks). Texture of BT steaks (6.5±1.9) was more liked than control steaks (5.8±1.8), while texture was similar for all other comparisons. Conversely, Warner-Bratzler shear force was NI-subprimal steaks \u3c control \u3c HPNI steaks = HPNI-subprimal steaks = BT steaks. Lack of correspondence between texture acceptance data and WBSF suggests that sensory scores were influenced by factors other than the force required for mechanical shear

    Rapid design of tool-wear condition monitoring systems for turning processes using novelty detection

    Get PDF
    Condition monitoring systems of manufacturing processes have been recognised in recent years as one of the key technologies that provide the competitive advantage in many manufacturing environments. It is capable of providing an essential means to reduce cost, increase productivity, improve quality and prevent damage to the machine or workpiece. Turning operations are considered one of the most common manufacturing processes in industry. It is used to manufacture different round objects such as shafts, spindles and pins. Despite recent development and intensive engineering research, the development of tool wear monitoring systems in turning is still ongoing challenge. In this paper, force signals are used for monitoring tool-wear in a feature fusion model. A novel approach for the design of condition monitoring systems for turning operations using novelty detection algorithm is presented. The results found prove that the developed system can be used for rapid design of condition monitoring systems for turning operations to predict tool-wear
    corecore