24,894 research outputs found

    GLCM-based chi-square histogram distance for automatic detection of defects on patterned textures

    Full text link
    Chi-square histogram distance is one of the distance measures that can be used to find dissimilarity between two histograms. Motivated by the fact that texture discrimination by human vision system is based on second-order statistics, we make use of histogram of gray-level co-occurrence matrix (GLCM) that is based on second-order statistics and propose a new machine vision algorithm for automatic defect detection on patterned textures. Input defective images are split into several periodic blocks and GLCMs are computed after quantizing the gray levels from 0-255 to 0-63 to keep the size of GLCM compact and to reduce computation time. Dissimilarity matrix derived from chi-square distances of the GLCMs is subjected to hierarchical clustering to automatically identify defective and defect-free blocks. Effectiveness of the proposed method is demonstrated through experiments on defective real-fabric images of 2 major wallpaper groups (pmm and p4m groups).Comment: IJCVR, Vol. 2, No. 4, 2011, pp. 302-31

    Knowledge-based support in Non-Destructive Testing for health monitoring of aircraft structures

    Get PDF
    Maintenance manuals include general methods and procedures for industrial maintenance and they contain information about principles of maintenance methods. Particularly, Non-Destructive Testing (NDT) methods are important for the detection of aeronautical defects and they can be used for various kinds of material and in different environments. Conventional non-destructive evaluation inspections are done at periodic maintenance checks. Usually, the list of tools used in a maintenance program is simply located in the introduction of manuals, without any precision as regards to their characteristics, except for a short description of the manufacturer and tasks in which they are employed. Improving the identification concepts of the maintenance tools is needed to manage the set of equipments and establish a system of equivalence: it is necessary to have a consistent maintenance conceptualization, flexible enough to fit all current equipment, but also all those likely to be added/used in the future. Our contribution is related to the formal specification of the system of functional equivalences that can facilitate the maintenance activities with means to determine whether a tool can be substituted for another by observing their key parameters in the identified characteristics. Reasoning mechanisms of conceptual graphs constitute the baseline elements to measure the fit or unfit between an equipment model and a maintenance activity model. Graph operations are used for processing answers to a query and this graph-based approach to the search method is in-line with the logical view of information retrieval. The methodology described supports knowledge formalization and capitalization of experienced NDT practitioners. As a result, it enables the selection of a NDT technique and outlines its capabilities with acceptable alternatives

    Ensemble Joint Sparse Low Rank Matrix Decomposition for Thermography Diagnosis System

    Get PDF
    Composite is widely used in the aircraft industry and it is essential for manufacturers to monitor its health and quality. The most commonly found defects of composite are debonds and delamination. Different inner defects with complex irregular shape is difficult to be diagnosed by using conventional thermal imaging methods. In this paper, an ensemble joint sparse low rank matrix decomposition (EJSLRMD) algorithm is proposed by applying the optical pulse thermography (OPT) diagnosis system. The proposed algorithm jointly models the low rank and sparse pattern by using concatenated feature space. In particular, the weak defects information can be separated from strong noise and the resolution contrast of the defects has significantly been improved. Ensemble iterative sparse modelling are conducted to further enhance the weak information as well as reducing the computational cost. In order to show the robustness and efficacy of the model, experiments are conducted to detect the inner debond on multiple carbon fiber reinforced polymer (CFRP) composites. A comparative analysis is presented with general OPT algorithms. Not withstand above, the proposed model has been evaluated on synthetic data and compared with other low rank and sparse matrix decomposition algorithms

    An automated procedure for detection and identification of ball bearing damage using multivariate statistics and pattern recognition

    Get PDF
    This paper suggests an automated approach for fault detection and classification in roller bearings, which is based on pattern recognition and principal components analysis of the measured vibration signals. The signals recorded are pre-processed applying a wavelet transform in order to extract the appropriate high frequency (detailed) area needed for ball bearing fault detection. This is followed by a pattern recognition (PR) procedure used to recognise between signals coming from healthy bearings and those generated from different bearing faults. Four categories of signals are considered, namely no fault signals (from a healthy bearing) inner race fault, outer race fault and rolling element fault signals. The PR procedure uses the first six principal components extracted from the signals after a proper principal component analysis (PCA). In this work a modified PCA is suggested which is much more appropriate for categorical data. The combination of the modified PCA and the PR method ensures that the fault is automatically detected and classified to one of the considered fault categories. The method suggested does not require the knowledge/ determination of the specific fault frequencies and/or any expert analysis: once the signal filtering is done and the PC's are found the PR method automatically gives the answer if there is a fault present and its type
    corecore