1,516,565 research outputs found

    Sensitivity analysis of a land surface scheme using multicriteria methods

    Get PDF
    Attempts to model surface-atmosphere interactions with greater physical realism have resulted in complex land surface schemes (LSS) with large numbers of parameters. A companion paper describes a multicriteria calibration procedure for extracting plot-scale estimates of the preferred ranges of these parameters from the various observational data sets that are now available. A complementary procedure is presented in this paper that provides an objective determination of the multicriteria sensitivity of the modeled variables to the parameters, thereby allowing the number of calibration parameters and hence the computational effort to be reduced. Two case studies are reported for the BATS model using data sets of typical quality but very different location and climatological regime (ARM-CART and Tucson). The sensitivity results were found to be consistent with the physical properties of the different environments, thereby supporting the reasonableness of the model formulation. Further, when the insensitive parameters are omitted from the calibration process, there is little degradation in the quality of the model description and little change in the preferred range of the remaining parameters. Copyright 1999 by the American Geophysical Union

    A computer solution for the dynamic load, lubricant film thickness, and surface temperatures in spiral-bevel gears

    Get PDF
    A computer method for determining the dynamic load between spiral bevel pinion and gear teeth contact along the path of contact is described. The dynamic load analysis governs both the surface temperature and film thickness. Computer methods for determining the surface temperature, and film thickness are presented along with results obtained for a pair of typical spiral bevel gears

    Automated Optical Inspection and Image Analysis of Superconducting Radio-Frequency Cavities

    Full text link
    The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. For an investigation of this inner surface of more than 100 cavities within the cavity fabrication for the European XFEL and the ILC HiGrade Research Project, an optical inspection robot OBACHT was constructed. To analyze up to 2325 images per cavity, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. The accuracy of this code is up to 97% and the PPV 99% within the resolution of 15.63 μm\mu \mathrm{m}. The optical obtained surface roughness is in agreement with standard profilometric methods. The image analysis algorithm identified and quantified vendor specific fabrication properties as the electron beam welding speed and the different surface roughness due to the different chemical treatments. In addition, a correlation of ρ=0.93\rho = -0.93 with a significance of 6σ6\,\sigma between an obtained surface variable and the maximal accelerating field was found
    corecore