5,282 research outputs found

    Micro glow plasma for localized nanostructural modification of carbon nanotube forest

    Get PDF
    This paper reports the localized selective treatment of vertically aligned carbon nanotubes, or CNT forests, for radial size modification of the nanotubes through a micro-scale glow plasma established on the material. An atmospheric-pressure DC glow plasma is shown to be stably sustained on the surface of the CNT forest in argon using micromachined tungsten electrodes with diameters down to 100 lm. Experiments reveal thinning or thickening of the nanotubes under the micro glow depending on the process conditions including discharge current and process time. These thinning and thickening effects in the treated nanotubes are measured to be up to ļæ½30% and ļæ½300% in their diameter, respectively, under the tested conditions. The elemental and Raman analyses suggest that the treated region of the CNT forest is pure carbon and maintains a degree of crystallinity. The local plasma treatment process investigated may allow modification of material characteristics in different domains for targeted regions or patterns, potentially aiding custom design of micro-electro- mechanical systems and other emerging devices enabled by the CNT forest

    Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review

    Get PDF
    In modern technology, there is a constant need to solve very complex problems and to fine-tune existing solutions. This is definitely the case in modern medicine with emerging fields such as regenerative medicine and tissue engineering. The problems, which are studied in these fields, set very high demands on the applied materials. In most cases, it is impossible to find a single material that meets all demands such as biocompatibility, mechanical strength, biodegradability (if required), and promotion of cell-adhesion, proliferation, and differentiation. A common strategy to circumvent this problem is the application of composite materials, which combine the properties of the different constituents. Another possible strategy is to selectively modify the surface of a material using different modification techniques. In the past decade, the use of nonthermal plasmas for selective surface modification has been a rapidly growing research field. This will be the highlight of this review. In a first part of this paper, a general introduction in the field of surface engineering will be given. Thereafter, we will focus on plasma-based strategies for surface modification. The purpose of the present review is twofold. First, we wish to provide a tutorial-type review that allows a fast introduction for researchers into the field. Second, we aim to give a comprehensive overview of recent work on surface modification of polymeric biomaterials, with a focus on plasma-based strategies. Some recent trends will be exemplified. On the basis of this literature study, we will conclude with some future trends for research

    Improvement of adhesive toughness measurement

    Get PDF
    The double cantilever beam (DCB) method for adhesive toughness measurement was improved by incorporating a sufļ¬ciently sharp crack made by a wedge-tapping method. A known route to producing cracks via loadingā€“unloading cycles was proved unreliable because the cycles produced plastic deformation in the adhesive where new cracks propagated. Abnormally high toughness values with large standard deviations were obtained with cracks made by embedding a non-sticky insert. Only instantly propagated cracks made by tapping were sufļ¬ciently sharp to produce reproducible, accurate tough-ness measurements. However, toughened resin was insensit

    Role of Plasma Surface Treatments on Wetting and Adhesion

    No full text
    There are many current and emerging wetting and adhesion issues which require an additional surface processing to enhance interfacial surface properties. Materials which are non-polar, such as polymers, have low surface energy and therefore typically require surface treatment to promote wetting of inks and coating. One way of increasing surface energy and reactivity is to bombard a polymer surface with atmospheric plasma. When the ionized gas is discharged on the polymer, effects of ablation, crosslinking and activation are produced on its surface. In this paper we will analyse the role of plasma and its use in increasing the surface energy to achieve wettability and improve adhesion of polymeric surface

    Applications of plasma-liquid systems : a review

    Get PDF
    Plasma-liquid systems have attracted increasing attention in recent years, owing to their high potential in material processing and nanoscience, environmental remediation, sterilization, biomedicine, and food applications. Due to the multidisciplinary character of this scientific field and due to its broad range of established and promising applications, an updated overview is required, addressing the various applications of plasma-liquid systems till now. In the present review, after a brief historical introduction on this important research field, the authors aimed to bring together a wide range of applications of plasma-liquid systems, including nanomaterial processing, water analytical chemistry, water purification, plasma sterilization, plasma medicine, food preservation and agricultural processing, power transformers for high voltage switching, and polymer solution treatment. Although the general understanding of plasma-liquid interactions and their applications has grown significantly in recent decades, it is aimed here to give an updated overview on the possible applications of plasma-liquid systems. This review can be used as a guide for researchers from different fields to gain insight in the history and state-of-the-art of plasma-liquid interactions and to obtain an overview on the acquired knowledge in this field up to now

    Effect of glow discharge treatment of poly(acrylic acid) preadsorbed onto poly(ethylene)

    Get PDF
    In order to introduce carboxylic acid groups at the surface of poly(ethylene) (PE) films, an attempt was made to covalently link a preadsorbed layer of poly(acrylic acid) (PAAc) on a PE film by an argon or tetrafluoromethane (CF4) plasma treatment. Surface analysis was performed by XPS (X-ray photoelectron spectroscopy) and water contact angle measurements. It was shown that by treatment of a PAAc layer preadsorbed on PE with an argon or a CF4 plasma, a small amount of carboxylic acid groups was introduced at the surface. A similar amount of these groups was obtained by plasma treatment of PE films without a preadsorbed PAAc layer. A comparison of the etching rates of PAAc and PE by either an argon or a CF4 plasma, showed that PAAc is etched much faster by both types of plasmas than PE. The preadsorbed PAAc layer on PE is etched off before it could be immobilized by either an argon or a CF4 plasma treatment. Additionally the effect of treating PE films for very short times with an argon or a CF4 plasma was studied. After an induction period of approximately 0.1 s, the oxidation during the argon plasma treatment and the fluorination during the CF4 plasma treatment were proportional to the logarithm of the treatment time for time periods up to 50 s
    • ā€¦
    corecore