1,294 research outputs found

    A framework for automation of data recording, modelling, and optimal statistical control of production lines

    Get PDF
    Unarguably, the automation of data collection and subsequent statistical treatment enhance the quality of industrial management systems. The rise of accessible digital technologies has enabled the introduction of the Industry 4.0 pillars in Cariri local companies. Particularly, such practice positively contributes to the triple bottom line of sustainable development: People, Environment, and Economy. The present work aims to provide a general automated framework for data recording and statistical control of conveyor belts in production lines. The software has been developed in three layers: graphical user interface, in PHP language; database collection, search, and safeguard, in MySQL; computational statistics, in R; and hardware control, in C. The computational statistics are based on the combination of artificial neural nets and autoregressive integrated and moving average models, via minimal variance method. The hardware components are composed by open source hardware as Arduino based boards and modular or industrial sensors. Specifically, the embedded system is designed to constantly monitor and record a number of measurable characteristics of the conveyor belts (e.g. electric consumption and temperature), via a number of sensors, allowing both the computation of statistical control metrics and the evaluation of the quality of the production system. As a case study, the project makes use of a laminated limestone production line, located at the Mineral Technology Center, Nova Olinda, Ceará state, Brazil.Indiscutivelmente, a automação da coleta de dados e o subsequente tratamento estatístico aumentam a qualidade dos sistemas de gestão industrial. O surgimento de tecnologias digitais acessíveis possibilitou a introdução dos pilares da Indústria 4.0 nas empresas locais do Cariri. Particularmente, tal prática contribui positivamente para o triplo resultado do desenvolvimento sustentável: Pessoas, Meio Ambiente e Economia. O presente trabalho tem como objetivo fornecer um Framework geral automatizado para registro de dados e controle estatístico de esteiras transportadoras em linhas de produção. O software foi desenvolvido em três camadas: interface gráfica do usuário, em linguagem PHP; coleta, pesquisa e proteção de banco de dados em MySQL; estatística computacional, em R; e controle de hardware, em C. As estatísticas computacionais são baseadas na combinação de redes neurais artificiais e modelos autorregressivos integrados e de média móvel, via método de mínima variância. Os componentes de hardware são compostos por hardware open source como placas baseadas em Arduino e sensores modulares ou industriais. Especificamente, o sistema embarcado é projetado para monitorar e registrar constantemente uma série de características mensuráveis das esteiras transportadoras (por exemplo, consumo elétrico e temperatura), por meio de uma série de sensores, permitindo tanto o cálculo de métricas de controle estatístico quanto a avaliação da qualidade do sistema de produção. Como estudo de caso, o projeto utiliza uma linha de produção de calcário laminado, localizada no Centro de Tecnologia Mineral, Nova Olinda, Ceará, Brasil

    Advanced Sensing and Control for Connected and Automated Vehicles

    Get PDF
    Connected and automated vehicles (CAVs) are a transformative technology that is expected to change and improve the safety and efficiency of mobility. As the main functional components of CAVs, advanced sensing technologies and control algorithms, which gather environmental information, process data, and control vehicle motion, are of great importance. The development of novel sensing technologies for CAVs has become a hotspot in recent years. Thanks to improved sensing technologies, CAVs are able to interpret sensory information to further detect obstacles, localize their positions, navigate themselves, and interact with other surrounding vehicles in the dynamic environment. Furthermore, leveraging computer vision and other sensing methods, in-cabin humans’ body activities, facial emotions, and even mental states can also be recognized. Therefore, the aim of this Special Issue has been to gather contributions that illustrate the interest in the sensing and control of CAVs

    Recent Trends in Computational Research on Diseases

    Get PDF
    Recent advances in information technology have brought forth a paradigm shift in science, especially in the biology and medical fields. Statistical methodologies based on high-performance computing and big data analysis are now indispensable for the qualitative and quantitative understanding of experimental results. In fact, the last few decades have witnessed drastic improvements in high-throughput experiments in health science, for example, mass spectrometry, DNA microarray, next generation sequencing, etc. Those methods have been providing massive data involving four major branches of omics (genomics, transcriptomics, proteomics, and metabolomics). Information about amino acid sequences, protein structures, and molecular structures are fundamental data for the prediction of bioactivity of chemical compounds when screening drugs. On the other hand, cell imaging, clinical imaging, and personal healthcare devices are also providing important data concerning the human body and disease. In parallel, various methods of mathematical modelling such as machine learning have developed rapidly. All of these types of data can be utilized in computational approaches to understand disease mechanisms, diagnosis, prognosis, drug discovery, drug repositioning, disease biomarkers, driver mutations, copy number variations, disease pathways, and much more. In this Special Issue, we have published 8 excellent papers dedicated to a variety of computational problems in the biomedical field from the genomic level to the whole-person physiological level

    Online Glucose Prediction in Type-1 Diabetes by Neural Network Models

    Get PDF
    Diabetes mellitus is a chronic disease characterized by dysfunctions of the normal regulation of glucose concentration in the blood. In Type 1 diabetes the pancreas is unable to produce insulin, while in Type 2 diabetes derangements in insulin secretion and action occur. As a consequence, glucose concentration often exceeds the normal range (70-180 mg/dL), with short- and long-term complications. Hypoglycemia (glycemia below 70 mg/dL) can progress from measurable cognition impairment to aberrant behaviour, seizure and coma. Hyperglycemia (glycemia above 180 mg/dL) predisposes to invalidating pathologies, such as neuropathy, nephropathy, retinopathy and diabetic foot ulcers. Conventional diabetes therapy aims at maintaining glycemia in the normal range by tuning diet, insulin infusion and physical activity on the basis of 4-5 daily self-monitoring of blood glucose (SMBG) measurements, obtained by the patient using portable minimally-invasive lancing sensor devices. New scenarios in diabetes treatment have been opened in the last 15 years, when minimally invasive continuous glucose monitoring (CGM) sensors, able to monitor glucose concentration in the subcutis continuously (i.e. with a reading every 1 to 5 min) over several days (7-10 consecutive days), entered clinical research. CGM allows tracking glucose dynamics much more effectively than SMBG and glycemic time-series can be used both retrospectively, e.g. to optimize metabolic control therapy, and in real-time applications, e.g. to generate alerts when glucose concentration exceeds the normal range thresholds or in the so-called “artificial pancreas”, as inputs of the closed loop control algorithm. For what concerns real time applications, the possibility of preventing critical events is, clearly, even more appealing than just detecting them as they occur. This would be doable if glucose concentration were known in advance, approximately 30-45 min ahead in time. The quasi continuous nature of the CGM signal renders feasible the use of prediction algorithms which could allow the patient to take therapeutic decisions on the basis of future instead of current glycemia, possibly mitigating/ avoiding imminent critical events. Since the introduction of CGM devices, various methods for short-time prediction of glucose concentration have been proposed in the literature. They are mainly based on black box time series models and the majority of them uses only the history of the CGM signal as input. However, glucose dynamics are influenced by many factors, e.g. quantity of ingested carbohydrates, administration of drugs including insulin, physical activity, stress, emotions and inter- and intra-individual variability is high. For these reasons, prediction of glucose time course is a challenging topic and results obtained so far may be improved. The aim of this thesis is to investigate the possibility of predicting future glucose concentration, in the short term, using new models based on neural networks (NN) exploiting, apart from CGM history, other available information. In particular, we first develop an original model which uses, as inputs, the CGM signal and information on timing and carbohydrate content of ingested meals. The prediction algorithm is based on a feedforward NN in parallel with a linear predictor. Results are promising: the predictor outperforms widely used state of art techniques and forecasts are accurate and allow obtaining a satisfactory time anticipation. Then we propose a second model, which exploits a different NN architecture, a jump NN, which combines benefits of both feedforward NN and linear algorithm obtaining performance similar to the previously developed predictor, although the simpler structure. To conclude the analysis, information on doses of injected bolus of insulin are added as input of the jump NN and the relative importance of every input signal in determining the NN output is investigated by developing an original sensitivity analysis. All the proposed predictors are assessed on real data of Type 1 diabetics, collected during the European FP7 project DIAdvisor. To evaluate the clinical usefulness of prediction in improving diabetes management we also propose a new strategy to quantify, using an in silico environment, the reduction of hypoglycemia when alerts and relative therapy are triggered on the basis of prediction, obtained with our NN algorithm, instead of CGM. Finally, possible inclusion of additional pieces of information such as physical activity is investigated, though at a preliminary level. The thesis is organized as follows. Chapter 1 gives an introduction to the diabetes disease and the current technologies for CGM, presents state of art techniques for short-time prediction of glucose concentration of diabetics and states the aim and the novelty of the thesis. Chapter 2 discusses NN paradigms from a theoretical point of view and specifies technical details common to the design and implementation of all the NN algorithms proposed in the following. Chapter 3 describes the first prediction model we propose, based on a NN in parallel with a linear algorithm. Chapter 4 presents an alternative simpler architecture, based on a jump NN, and demonstrates its equivalence, in terms of performance, with the previously proposed algorithm. Chapter 5 further improves the jump NN, by adding new inputs and investigating their effective utility by a sensitivity analysis. Chapter 6 points out possible future developments, as the possibility of exploiting information on physical activity, reporting also a preliminary analysis. Finally, Chapter 7 describes the application of NN for generation of preventive hypoglycemic alerts and evaluates improvement of diabetes management in a simulated environment. Some concluding remarks end the thesis

    The 1989 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    The following topics are addressed: mission operations support; planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; and modeling and simulation
    corecore