1,542 research outputs found

    Neuronal assembly dynamics in supervised and unsupervised learning scenarios

    Get PDF
    The dynamic formation of groups of neuronsā€”neuronal assembliesā€”is believed to mediate cognitive phenomena at many levels, but their detailed operation and mechanisms of interaction are still to be uncovered. One hypothesis suggests that synchronized oscillations underpin their formation and functioning, with a focus on the temporal structure of neuronal signals. In this context, we investigate neuronal assembly dynamics in two complementary scenarios: the first, a supervised spike pattern classification task, in which noisy variations of a collection of spikes have to be correctly labeled; the second, an unsupervised, minimally cognitive evolutionary robotics tasks, in which an evolved agent has to cope with multiple, possibly conflicting, objectives. In both cases, the more traditional dynamical analysis of the systemā€™s variables is paired with information-theoretic techniques in order to get a broader picture of the ongoing interactions with and within the network. The neural network model is inspired by the Kuramoto model of coupled phase oscillators and allows one to fine-tune the network synchronization dynamics and assembly configuration. The experiments explore the computational power, redundancy, and generalization capability of neuronal circuits, demonstrating that performance depends nonlinearly on the number of assemblies and neurons in the network and showing that the framework can be exploited to generate minimally cognitive behaviors, with dynamic assembly formation accounting for varying degrees of stimuli modulation of the sensorimotor interactions

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Machine learning-based rock characterisation models for rotary-percussive drilling

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordData accessibility: The data sets generated and analysed during the current study are available from the corresponding author on reasonable request.Vibro-impact drilling has shown huge potential of delivering better rate of penetration, improved tools lifespan and better borehole stability. However, being resonantly instigated, the technique requires a continuous and quantitative characterisation of drill-bit encountered rock materials in order to maintain optimal drilling performance. The present paper introduces a non-conventional method for downhole rock characterisation using measurable impact dynamics and machine learning algorithms. An impacting system that mimics bit-rock impact actions is employed in this present study, and various multistable responses of the system have been simulated and investigated. Features from measurable drill-bit acceleration signals were integrated with operated system parameters and machine learning methods to develop intelligent models capable of quantitatively characterising downhole rock strength. Multilayer perceptron, support vector regression and Gaussian process regression networks have been explored. Based on the performance analysis, the multilayer perceptron networks showed the highest potential for the real-time quantitative rock characterisation using considered acceleration features.Petroleum Technology Development Fund (PTDF) of Nigeri

    Bifurcation and Chaos in Fractional-Order Systems

    Get PDF
    This book presents a collection of seven technical papers on fractional-order complex systems, especially chaotic systems with hidden attractors and symmetries, in the research front of the field, which will be beneficial for scientific researchers, graduate students, and technical professionals to study and apply. It is also suitable for teaching lectures and for seminars to use as a reference on related topics

    Perspectives on adaptive dynamical systems

    Get PDF
    Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in various real-world systems like the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open challenges, and give perspectives on future research directions, looking to inspire interdisciplinary approaches.Comment: 46 pages, 9 figure

    Philip K. Dick and the Spectre of the Subject

    Get PDF
    This thesis considers the American author Philip K. Dick (1928 - 1982) from a philosophical framework informed by the work of the contemporary philosopher Alain Badiou. Drawing from three different phases of Dickā€™s career, I aim to demonstrate that his The Man in the High Castle (1962), Time Out of Joint (1959) and the later short story ā€œWe Can Remember It For You Wholesaleā€ can examine and comment upon the ethical call in Badiouā€™s subtractive schema of the event. However, this is not to suggest that the thesis is a ventriloquist application of philosophy to text. Rather, the work will also consider Badiouā€™s Lacanian heritage and move to discuss the grand categories the two thinkers share in common: the Real, truth, subject and the ethical call through an analysis of Dickā€™s fiction

    System level power integrity transient analysis using a physics-based approach

    Get PDF
    With decreasing supply voltage level and massive demanding current on system chipset, power integrity design becomes more and more critical for system stability. The ultimate goal of well-designed power delivery network (PDN) is to deliver desired voltage level from the source to destination, in other words, to minimize voltage noise delivered to digital devices. The thesis is composed of three parts. The first part focuses on-die level power models including simplified chip power model (CPM) for system level analysis and the worst scenario current profile. The second part of this work introduces the physics-based equivalent circuit model to simplify the passive PDN model to RLC circuit netlist, to be compatible with any spice simulators and tremendously boost simulation speed. Then a novel system/chip level end-to-end transient model is proposed, including the die model and passive PDN model discussed in previous two chapters as well as a SIMPLIS based small signal VRM model. In the last part of the thesis, how to model voltage regulator module (VRM) is explicitly discussed. Different linear approximated VRM modeling approaches have been compared with the SIMPLIS small signal VRM model in both frequency domain and time domain. The comparison provides PI engineers a guideline to choose specific VRM model under specific circumstances. Finally yet importantly, a PDN optimization example was given. Other than previous PDN optimization approaches, a novel hybrid target impedance concept was proposed in this thesis, in order to improve system level PDN optimization process --Abstract, page iv

    Developing an electron multipacting-free cathode unit of the superconducting radio frequency photoinjector

    Get PDF
    Future light sources such as synchrotron radiation sources have in common that they require injectors, which provide high-brilliance, high-current electron beams in almost continuous operation. Superconducting radio frequency photoinjector (SRF gun) provided a promising approach. However, some limitations occur caused by electron multipacting in the cathode vicinity, which prevent the superconducting radio frequency photoinjector (SRF gun) from maximum productivity. The aim of this thesis is to develop a new design of the photocathode channel
    • ā€¦
    corecore