51,867 research outputs found

    Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    Full text link
    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, food industry, cosmetics, or spills of liquids. While the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the last two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As model system we pick a sessile Ouzo droplet (as known from daily life - a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent, while the more volatile ethanol is evaporating, preferentially at the rim of the drop due to the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color which typifies the so-called 'Ouzo-effect'. Once all ethanol has evaporated, the drop, which now has a characteristic non-spherical-cap shape, has become clear again, with a water drop sitting on an oil-ring (phase III), finalizing the phase inversion. Finally, in phase IV, also all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.Comment: 40 pages, 12 figure

    Reconfigurable mobile communications: compelling needs and technologies to support reconfigurable terminals

    Get PDF

    Transparent Persistence with Java Data Objects

    Full text link
    Flexible and performant Persistency Service is a necessary component of any HEP Software Framework. The building of a modular, non-intrusive and performant persistency component have been shown to be very difficult task. In the past, it was very often necessary to sacrifice modularity to achieve acceptable performance. This resulted in the strong dependency of the overall Frameworks on their Persistency subsystems. Recent development in software technology has made possible to build a Persistency Service which can be transparently used from other Frameworks. Such Service doesn't force a strong architectural constraints on the overall Framework Architecture, while satisfying high performance requirements. Java Data Object standard (JDO) has been already implemented for almost all major databases. It provides truly transparent persistency for any Java object (both internal and external). Objects in other languages can be handled via transparent proxies. Being only a thin layer on top of a used database, JDO doesn't introduce any significant performance degradation. Also Aspect-Oriented Programming (AOP) makes possible to treat persistency as an orthogonal Aspect of the Application Framework, without polluting it with persistence-specific concepts. All these techniques have been developed primarily (or only) for the Java environment. It is, however, possible to interface them transparently to Frameworks built in other languages, like for example C++. Fully functional prototypes of flexible and non-intrusive persistency modules have been build for several other packages, as for example FreeHEP AIDA and LCG Pool AttributeSet (package Indicium).Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003. PSN TUKT00

    SDN/NFV-enabled satellite communications networks: opportunities, scenarios and challenges

    Get PDF
    In the context of next generation 5G networks, the satellite industry is clearly committed to revisit and revamp the role of satellite communications. As major drivers in the evolution of (terrestrial) fixed and mobile networks, Software Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies are also being positioned as central technology enablers towards improved and more flexible integration of satellite and terrestrial segments, providing satellite network further service innovation and business agility by advanced network resources management techniques. Through the analysis of scenarios and use cases, this paper provides a description of the benefits that SDN/NFV technologies can bring into satellite communications towards 5G. Three scenarios are presented and analysed to delineate different potential improvement areas pursued through the introduction of SDN/NFV technologies in the satellite ground segment domain. Within each scenario, a number of use cases are developed to gain further insight into specific capabilities and to identify the technical challenges stemming from them.Peer ReviewedPostprint (author's final draft

    Towards generic satellite payloads: software radio

    Get PDF
    Satellite payloads are becoming much more complex with the evolution towards multimedia applications. Moreover satellite lifetime increases while standard and services evolve faster, necessitating a hardware platform that can evolves for not developing new systems on each change. The same problem occurs in terrestrial systems like mobile networks and a foreseen solution is the software defined radio technology. In this paper we describe a way of introducing this concept at satellite level to offer to operators the required flexibility in the system. The digital functions enabling this technology, the hardware components implementing the functions and the reconfiguration processes are detailed. We show that elements of the software radio for satellites exist and that this concept is feasible

    Colloidal Jamming at Interfaces: a Route to Fluid-bicontinuous Gels

    Full text link
    Colloidal particles or nanoparticles, with equal affinity for two fluids, are known to adsorb irreversibly to the fluid-fluid interface. We present large-scale computer simulations of the demixing of a binary solvent containing such particles. The newly formed interface sequesters the colloidal particles; as the interface coarsens, the particles are forced into close contact by interfacial tension. Coarsening is dramatically curtailed, and the jammed colloidal layer seemingly enters a glassy state, creating a multiply connected, solid-like film in three dimensions. The resulting gel contains percolating domains of both fluids, with possible uses as, for example, a microreaction medium
    • …
    corecore