27,346 research outputs found

    Improving Mathematics in the Early Years and Key Stage 1

    Get PDF

    Levels of inquiry: Hierarchies of pedagogical practices and inquiry processes

    Get PDF
    Provides pedagogical insight concerning the skill of inquiry The resource being annotated is: http://www.dlese.org/dds/catalog_COSEE-1808.htm

    Experimental Object-Oriented Modelling

    Get PDF
    This thesis examines object-oriented modelling in experimental system development. Object-oriented modelling aims at representing concepts and phenomena of a problem domain in terms of classes and objects. Experimental system development seeks active experimentation in a system development project through, e.g., technical prototyping and active user involvement. We introduce and examine "experimental object-oriented modelling" as the intersection of these practices

    How do particle physicists learn the programming concepts they need?

    Full text link
    The ability to read, use and develop code efficiently and successfully is a key ingredient in modern particle physics. We report the experience of a training program, identified as "Advanced Programming Concepts", that introduces software concepts, methods and techniques to work effectively on a daily basis in a HEP experiment or other programming intensive fields. This paper illustrates the principles, motivations and methods that shape the "Advanced Computing Concepts" training program, the knowledge base that it conveys, an analysis of the feedback received so far, and the integration of these concepts in the software development process of the experiments as well as its applicability to a wider audience.Comment: 8 pages, 2 figures, CHEP2015 proceeding

    Constructive Use of Errors in Teaching the UML Class Diagram in an IS Engineering Course

    Get PDF
    A class diagram is one of the most important diagrams of Unified Modeling Language (UML) and can be used for modeling the static structure of a software system. Learning from errors is a teaching approach based on the assumption that errors can promote learning. We applied a constructive approach of using errors in designing a UML class diagram in order to (a) categorize the students’ errors when they design a class diagram from a text scenario that describes a specific organization and (b) determine whether the learning-from-errors approach enables students to produce more accurate and correct diagrams. The research was conducted with college students (N = 45) studying for their bachelor’s degree in engineering. The approach is presented, and the learning-from-errors activity is illustrated. We present the students’ errors in designing the class diagram before and after the activity, together with the students’ opinions about applying the new approach in their course. Twenty errors in fundamental components of the class diagram design were observed. The students erred less after the activity of learning from errors. The displayed results show the relevance and potential of embedding our approach in teaching. Furthermore, the students viewed the learning-from-errors activity favorably. Thus, one of the benefits of our developed activity is increased student motivation. In light of the improved performance of the task, and the students’ responses to the learning-from-errors approach, we recommend that information systems teachers use similar activities in different fields and on various topics

    Models and learning science

    Full text link

    What does social semiotics have to offer mathematics education research?

    Get PDF
    • 

    corecore