1,511 research outputs found

    PARNT: A statistic based approach to extract non-taxonomic relationships of ontologies from text

    Get PDF
    Learning Non-Taxonomic Relationships is a subfield of Ontology learning that aims at automating the extraction of these relationships from text. This article proposes PARNT, a novel approach that supports ontology engineers in extracting these elements from corpora of plain English. PARNT is parametrized, extensible and uses original solutions that help to achieve better results when compared to other techniques for extracting non-taxonomic relationships from ontology concepts and English text. To evaluate the PARNT effectiveness, a comparative experiment with another state of the art technique was conducted.This work is supported by CNPq and CAPES, research funding agencies of the Brazilian government

    Reviewing the problem of learning non-taxonomic relationships of ontologies from text

    Get PDF
    Learning Non-Taxonomic Relationships is a sub-field of Ontology Learning that aims at automating the extraction of these relationships from text. This article discusses the problem of Learning Non-Taxonomic Relationships of ontologies and proposes a generic process for approaching it. Some techniques representing the state of the art of this field are discussed along with their advantages and limitations. Finally, a framework for Learning Non- Taxonomic Relationships being developed by the authors is briefly discussed. This framework intends to be a customizable solution to reach good effectiveness in the process of extraction of non-taxonomic relationships according to the characteristics of the corpus.This work is supported by CNPq, CAPES and FAPEMA, research funding agencies of the Brazilian government

    The problem of learning non-taxonomic relationships of ontologies from text

    Get PDF
    Manual construction of ontologies by domain experts and knowledge engineers is a costly task. Thus, automatic and/or semi-automatic approaches to their development are needed. Ontology Learning aims at identifying its constituent elements, such as non-taxonomic relationships, from textual information sources. This article presents a discussion of the problem of Learning Non-Taxonomic Relationships of Ontologies and defines its generic process. Four techniques representing the state of the art of Learning Non-Taxonomic Relationships of Ontologies are described and the solutions they provide are discussed along with their advantages and limitations

    Behavior change interventions: the potential of ontologies for advancing science and practice

    Get PDF
    A central goal of behavioral medicine is the creation of evidence-based interventions for promoting behavior change. Scientific knowledge about behavior change could be more effectively accumulated using "ontologies." In information science, an ontology is a systematic method for articulating a "controlled vocabulary" of agreed-upon terms and their inter-relationships. It involves three core elements: (1) a controlled vocabulary specifying and defining existing classes; (2) specification of the inter-relationships between classes; and (3) codification in a computer-readable format to enable knowledge generation, organization, reuse, integration, and analysis. This paper introduces ontologies, provides a review of current efforts to create ontologies related to behavior change interventions and suggests future work. This paper was written by behavioral medicine and information science experts and was developed in partnership between the Society of Behavioral Medicine's Technology Special Interest Group (SIG) and the Theories and Techniques of Behavior Change Interventions SIG. In recent years significant progress has been made in the foundational work needed to develop ontologies of behavior change. Ontologies of behavior change could facilitate a transformation of behavioral science from a field in which data from different experiments are siloed into one in which data across experiments could be compared and/or integrated. This could facilitate new approaches to hypothesis generation and knowledge discovery in behavioral science

    Evaluating techniques for learning non-taxonomic relationships of ontologies from text

    Get PDF
    "Manuscript"Learning Non-Taxonomic Relationships is a sub-field of Ontology Learning that aims at automating the extraction of these relationships from text. Several techniques have been proposed based on Natural Language Processing and Machine Learning. However just like for other techniques for Ontology Learning, evaluating techniques for Learning Non-Taxonomic Relationships is an open problem. Three general proposals suggest that the learned ontologies can be evaluated in an executable application or by domain experts or even by a comparison with a predefined reference ontology. This article proposes two procedures to evaluate techniques for Learning Non-Taxonomic Relationships based on the comparison of the relationships obtained with those of a reference ontology. Also, these procedures are used in the evaluation of two state of the art techniques performing the extraction of relationships from two corpora in the domains of biology and Family Law.This work is supported by CNPq, CAPES and FAPEMA, research funding agencies of the Brazilian government

    Constructive Ontology Engineering

    Get PDF
    The proliferation of the Semantic Web depends on ontologies for knowledge sharing, semantic annotation, data fusion, and descriptions of data for machine interpretation. However, ontologies are difficult to create and maintain. In addition, their structure and content may vary depending on the application and domain. Several methods described in literature have been used in creating ontologies from various data sources such as structured data in databases or unstructured text found in text documents or HTML documents. Various data mining techniques, natural language processing methods, syntactical analysis, machine learning methods, and other techniques have been used in building ontologies with automated and semi-automated processes. Due to the vast amount of unstructured text and its continued proliferation, the problem of constructing ontologies from text has attracted considerable attention for research. However, the constructed ontologies may be noisy, with missing and incorrect knowledge. Thus ontology construction continues to be a challenging research problem. The goal of this research is to investigate a new method for guiding a process of extracting and assembling candidate terms into domain specific concepts and relationships. The process is part of an overall semi automated system for creating ontologies from unstructured text sources and is driven by the user’s goals in an incremental process. The system applies natural language processing techniques and uses a series of syntactical analysis tools for extracting grammatical relations from a list of text terms representing the parts of speech of a sentence. The extraction process focuses on evaluating the subject predicate-object sequences of the text for potential concept-relation-concept triples to be built into an ontology. Users can guide the system by selecting seedling concept-relation-concept triples to assist building concepts from the extracted domain specific terms. As a result, the ontology building process develops into an incremental one that allows the user to interact with the system, to guide the development of an ontology, and to tailor the ontology for the user’s application needs. The main contribution of this work is the implementation and evaluation of a new semi- automated methodology for constructing domain specific ontologies from unstructured text corpus

    Learning Ontology Relations by Combining Corpus-Based Techniques and Reasoning on Data from Semantic Web Sources

    Get PDF
    The manual construction of formal domain conceptualizations (ontologies) is labor-intensive. Ontology learning, by contrast, provides (semi-)automatic ontology generation from input data such as domain text. This thesis proposes a novel approach for learning labels of non-taxonomic ontology relations. It combines corpus-based techniques with reasoning on Semantic Web data. Corpus-based methods apply vector space similarity of verbs co-occurring with labeled and unlabeled relations to calculate relation label suggestions from a set of candidates. A meta ontology in combination with Semantic Web sources such as DBpedia and OpenCyc allows reasoning to improve the suggested labels. An extensive formal evaluation demonstrates the superior accuracy of the presented hybrid approach

    From linguistic patterns to ontology structures

    Get PDF
    The aim of this paper is to contribute to the research on linguistic patterns focusing on the subclassOf relation for the semi-automatic construction of ontologies. Taking as a starting point those ontological structures corresponding to consensual modelling solutions, which are known as Ontology Design Patterns (ODPs), we identified the linguistic patterns that convey the relation captured in ODPs as Lexico-Syntactic Patterns (LSPs) and included them in an LSP-ODP pattern repository. LSPs will permit novice users the conversion of the domain field they want to model into an ontological structure. In the present contribution, the language of classification in Spanish is studied in order to collect the most common ways of verbally expressing the subclassOf relation. Then, the topology of the most common classification patterns is analysed to discover the type of ontological knowledge provided, i.e. which concept relation, and the two essential features in ontology knowledge: exhaustiveness and disjointness

    Ontology Enrichment from Free-text Clinical Documents: A Comparison of Alternative Approaches

    Get PDF
    While the biomedical informatics community widely acknowledges the utility of domain ontologies, there remain many barriers to their effective use. One important requirement of domain ontologies is that they achieve a high degree of coverage of the domain concepts and concept relationships. However, the development of these ontologies is typically a manual, time-consuming, and often error-prone process. Limited resources result in missing concepts and relationships, as well as difficulty in updating the ontology as domain knowledge changes. Methodologies developed in the fields of Natural Language Processing (NLP), Information Extraction (IE), Information Retrieval (IR), and Machine Learning (ML) provide techniques for automating the enrichment of ontology from free-text documents. In this dissertation, I extended these methodologies into biomedical ontology development. First, I reviewed existing methodologies and systems developed in the fields of NLP, IR, and IE, and discussed how existing methods can benefit the development of biomedical ontologies. This previously unconducted review was published in the Journal of Biomedical Informatics. Second, I compared the effectiveness of three methods from two different approaches, the symbolic (the Hearst method) and the statistical (the Church and Lin methods), using clinical free-text documents. Third, I developed a methodological framework for Ontology Learning (OL) evaluation and comparison. This framework permits evaluation of the two types of OL approaches that include three OL methods. The significance of this work is as follows: 1) The results from the comparative study showed the potential of these methods for biomedical ontology enrichment. For the two targeted domains (NCIT and RadLex), the Hearst method revealed an average of 21% and 11% new concept acceptance rates, respectively. The Lin method produced a 74% acceptance rate for NCIT; the Church method, 53%. As a result of this study (published in the Journal of Methods of Information in Medicine), many suggested candidates have been incorporated into the NCIT; 2) The evaluation framework is flexible and general enough that it can analyze the performance of ontology enrichment methods for many domains, thus expediting the process of automation and minimizing the likelihood that key concepts and relationships would be missed as domain knowledge evolves
    corecore