601 research outputs found

    Knowledge-Intensive Processes: Characteristics, Requirements and Analysis of Contemporary Approaches

    Get PDF
    Engineering of knowledge-intensive processes (KiPs) is far from being mastered, since they are genuinely knowledge- and data-centric, and require substantial flexibility, at both design- and run-time. In this work, starting from a scientific literature analysis in the area of KiPs and from three real-world domains and application scenarios, we provide a precise characterization of KiPs. Furthermore, we devise some general requirements related to KiPs management and execution. Such requirements contribute to the definition of an evaluation framework to assess current system support for KiPs. To this end, we present a critical analysis on a number of existing process-oriented approaches by discussing their efficacy against the requirements

    Change Support in Process-Aware Information Systems - A Pattern-Based Analysis

    Get PDF
    In today's dynamic business world the economic success of an enterprise increasingly depends on its ability to react to changes in its environment in a quick and flexible way. Process-aware information systems (PAIS) offer promising perspectives in this respect and are increasingly employed for operationally supporting business processes. To provide effective business process support, flexible PAIS are needed which do not freeze existing business processes, but allow for loosely specified processes, which can be detailed during run-time. In addition, PAIS should enable authorized users to flexibly deviate from the predefined processes if required (e.g., by allowing them to dynamically add, delete, or move process activities) and to evolve business processes over time. At the same time PAIS must ensure consistency and robustness. The emergence of different process support paradigms and the lack of methods for comparing existing change approaches have made it difficult for PAIS engineers to choose the adequate technology. In this paper we suggest a set of changes patterns and change support features to foster the systematic comparison of existing process management technology with respect to process change support. Based on these change patterns and features, we provide a detailed analysis and evaluation of selected systems from both academia and industry. The identified change patterns and change support features facilitate the comparison of change support frameworks, and consequently will support PAIS engineers in selecting the right technology for realizing flexible PAIS. In addition, this work can be used as a reference for implementing more flexible PAIS

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    Cost-informed operational process support

    Get PDF
    The ability to steer business operations in alignment with the true origins of costs, and to be informed about this on a real-time basis, allows businesses to increase profitability. In most organisations however, high-level cost-based managerial decisions are still being made separately from process-related operational decisions. In this paper, we describe how process-related decisions at the operational level can be guided by cost considerations and how these cost-informed decision rules can be supported by a workflow management system. The paper presents the conceptual framework together with data requirements and technical challenges that need to be addressed to realise cost-informed workflow execution. The feasibility of our approach is demonstrated using a prototype implementation in the YAWL workflow environment

    A service to automate the task assignment process in YAWL

    Get PDF
    Master of ScienceDepartment of Computing and Information SciencesGurdip SinghDeveloping an optimal working environment and managing the of work load in an efficient manner are the major challenges for most businesses today. So, the importance of the workflow and workflow management in an organization is unquestionable. Many organizations use sophisticated systems to organize the workflows. One such workflow system based on a concise and powerful modeling language called “Yet Another Workflow Language” is YAWL. YAWL handles complex data, transformations, integration with organizational resources and Web Service integration. Workflow comprises of three main perspectives: control-flow, data and the resources. In Yawl, the control-flow and the data-flow are tightly coupled within the workflow enactment engine. But the resource perspective is provided by a discrete custom service called Resource Service. Administrative tools are provided using which the administrator has to manually select the resource (referred as participant) which needs to perform a particular task of the workflow. This project aims at developing a service which can automate the assignment of the tasks to the participants by using the Resource service which provides number of interfaces that expose the full functionality of the service. The application of this project with respect to Healthcare domain is presented. Healthcare domain is the one of the most demanding and yet critical business process. Hospitals face increasing pressure to both improve the quality of the services delivered to patients and to reduce costs .Hence there is significant demand on hospitals in regard to how the organization, execution, and monitoring of work processes is performed. Workflow Management Systems like YAWL offers a potential solution as they support processes by managing the flow of work
    • …
    corecore