65,670 research outputs found

    A FRAMEWORK FOR INTELLIGENT VOICE-ENABLED E-EDUCATION SYSTEMS

    Get PDF
    Although the Internet has received significant attention in recent years, voice is still the most convenient and natural way of communicating between human to human or human to computer. In voice applications, users may have different needs which will require the ability of the system to reason, make decisions, be flexible and adapt to requests during interaction. These needs have placed new requirements in voice application development such as use of advanced models, techniques and methodologies which take into account the needs of different users and environments. The ability of a system to behave close to human reasoning is often mentioned as one of the major requirements for the development of voice applications. In this paper, we present a framework for an intelligent voice-enabled e-Education application and an adaptation of the framework for the development of a prototype Course Registration and Examination (CourseRegExamOnline) module. This study is a preliminary report of an ongoing e-Education project containing the following modules: enrollment, course registration and examination, enquiries/information, messaging/collaboration, e-Learning and library. The CourseRegExamOnline module was developed using VoiceXML for the voice user interface(VUI), PHP for the web user interface (WUI), Apache as the middle-ware and MySQL database as back-end. The system would offer dual access modes using the VUI and WUI. The framework would serve as a reference model for developing voice-based e-Education applications. The e-Education system when fully developed would meet the needs of students who are normal users and those with certain forms of disabilities such as visual impairment, repetitive strain injury (RSI), etc, that make reading and writing difficult

    The cathedral and the bazaar of e-repository development: encouraging community engagement with moving pictures and sound

    Get PDF
    This paper offers an insight into the development, use and governance of e‐repositories for learning and teaching, illustrated by Eric Raymond's bazaar and cathedral analogies and by a comparison of collection strategies that focus on content coverage or on the needs of users. It addresses in particular the processes that encourage and achieve community engagement. This insight is illustrated by one particular e‐repository, the Education Media On‐Line (EMOL) service. This paper draws analogies between the bazaar approach for open source software development and its possibilities for developing e‐repositories for learning and teaching. It suggests in particular that the development, use and evaluation of online moving pictures and sound objects for learning and teaching can benefit greatly from the community engagement lessons provided by the development, use and evaluation of open source software. Such lessons can be underpinned by experience in the area of learning resource collections, where repositories have been classified as ‘collections‐based’ or ‘user‐based’. Lessons from the open source movement may inform the development of e‐repositories such as EMOL in the future

    Adaptive hypermedia for education and training

    Get PDF
    Adaptive hypermedia (AH) is an alternative to the traditional, one-size-fits-all approach in the development of hypermedia systems. AH systems build a model of the goals, preferences, and knowledge of each individual user; this model is used throughout the interaction with the user to adapt to the needs of that particular user (Brusilovsky, 1996b). For example, a student in an adaptive educational hypermedia system will be given a presentation that is adapted specifically to his or her knowledge of the subject (De Bra & Calvi, 1998; Hothi, Hall, & Sly, 2000) as well as a suggested set of the most relevant links to proceed further (Brusilovsky, Eklund, & Schwarz, 1998; Kavcic, 2004). An adaptive electronic encyclopedia will personalize the content of an article to augment the user's existing knowledge and interests (Bontcheva & Wilks, 2005; Milosavljevic, 1997). A museum guide will adapt the presentation about every visited object to the user's individual path through the museum (Oberlander et al., 1998; Stock et al., 2007). Adaptive hypermedia belongs to the class of user-adaptive systems (Schneider-Hufschmidt, Kühme, & Malinowski, 1993). A distinctive feature of an adaptive system is an explicit user model that represents user knowledge, goals, and interests, as well as other features that enable the system to adapt to different users with their own specific set of goals. An adaptive system collects data for the user model from various sources that can include implicitly observing user interaction and explicitly requesting direct input from the user. The user model is applied to provide an adaptation effect, that is, tailor interaction to different users in the same context. In different kinds of adaptive systems, adaptation effects could vary greatly. In AH systems, it is limited to three major adaptation technologies: adaptive content selection, adaptive navigation support, and adaptive presentation. The first of these three technologies comes from the fields of adaptive information retrieval (IR) and intelligent tutoring systems (ITS). When the user searches for information, the system adaptively selects and prioritizes the most relevant items (Brajnik, Guida, & Tasso, 1987; Brusilovsky, 1992b)

    Opportunities and challenges in using AI Chatbots in Higher Education

    Get PDF
    Artificial intelligence (AI) conversational chatbots have gained popularity over time, and have been widely used in the fields of e-commerce, online banking, and digital healthcare and well-being, among others. The technology has the potential to provide personalised service to a range of consumers. However, the use of chatbots within educational settings is still limited. In this paper, we present three chatbot prototypes, the Warwick Manufacturing Group, University of Warwick, are currently developing, and discuss the potential opportunities and technical challenges we face when considering AI chatbots to support our daily activities within the department. Three AI virtual agents are under development: 1) to support the delivery of a taught Master's course simulation game; 2) to support the training and use of a newly introduced educational application; 3) to improve the processing of helpdesk requests within a university department. We hope this paper is informative to those interested in using chatbots in the educational domain. We also aim to improve awareness among those within the chatbot development industry, in particular the chatbot engine providers, about the educational and operational needs within educational institutes, which may differ from those in other domains
    corecore