25,843 research outputs found

    Supporting Smart System applications in Scientific Gateway environment

    Get PDF

    dWatch: a Personal Wrist Watch for Smart Environments

    Get PDF
    Intelligent environments, such as smart homes or domotic systems, have the potential to support people in many of their ordinary activities, by allowing complex control strategies for managing various capabilities of a house or a building: lights, doors, temperature, power and energy, music, etc. Such environments, typically, provide these control strategies by means of computers, touch screen panels, mobile phones, tablets, or In-House Displays. An unobtrusive and typically wearable device, like a bracelet or a wrist watch, that lets users perform various operations in their homes and to receive notifications from the environment, could strenghten the interaction with such systems, in particular for those people not accustomed to computer systems (e.g., elderly) or in contexts where they are not in front of a screen. Moreover, such wearable devices reduce the technological gap introduced in the environment by home automation systems, thus permitting a higher level of acceptance in the daily activities and improving the interaction between the environment and its inhabitants. In this paper, we introduce the dWatch, an off-the-shelf personal wearable notification and control device, integrated in an intelligent platform for domotic systems, designed to optimize the way people use the environment, and built as a wrist watch so that it is easily accessible, worn by people on a regular basis and unobtrusiv

    Platforms and Protocols for the Internet of Things

    Get PDF
    Building a general architecture for the Internet of Things (IoT) is a very complex task, exacerbated by the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. In this paper, we identify the main blocks of a generic IoT architecture, describing their features and requirements, and analyze the most common approaches proposed in the literature for each block. In particular, we compare three of the most important communication technologies for IoT purposes, i.e., REST, MQTT, and AMQP, and we also analyze three IoT platforms: openHAB, Sentilo, and Parse. The analysis will prove the importance of adopting an integrated approach that jointly addresses several issues and is able to flexibly accommodate the requirements of the various elements of the system. We also discuss a use case which illustrates the design challenges and the choices to make when selecting which protocols and technologies to use

    A survey on subjecting electronic product code and non-ID objects to IP identification

    Full text link
    Over the last decade, both research on the Internet of Things (IoT) and real-world IoT applications have grown exponentially. The IoT provides us with smarter cities, intelligent homes, and generally more comfortable lives. However, the introduction of these devices has led to several new challenges that must be addressed. One of the critical challenges facing interacting with IoT devices is to address billions of devices (things) around the world, including computers, tablets, smartphones, wearable devices, sensors, and embedded computers, and so on. This article provides a survey on subjecting Electronic Product Code and non-ID objects to IP identification for IoT devices, including their advantages and disadvantages thereof. Different metrics are here proposed and used for evaluating these methods. In particular, the main methods are evaluated in terms of their: (i) computational overhead, (ii) scalability, (iii) adaptability, (iv) implementation cost, and (v) whether applicable to already ID-based objects and presented in tabular format. Finally, the article proves that this field of research will still be ongoing, but any new technique must favorably offer the mentioned five evaluative parameters.Comment: 112 references, 8 figures, 6 tables, Journal of Engineering Reports, Wiley, 2020 (Open Access

    Long-Range Communications in Unlicensed Bands: the Rising Stars in the IoT and Smart City Scenarios

    Full text link
    Connectivity is probably the most basic building block of the Internet of Things (IoT) paradigm. Up to know, the two main approaches to provide data access to the \emph{things} have been based either on multi-hop mesh networks using short-range communication technologies in the unlicensed spectrum, or on long-range, legacy cellular technologies, mainly 2G/GSM, operating in the corresponding licensed frequency bands. Recently, these reference models have been challenged by a new type of wireless connectivity, characterized by low-rate, long-range transmission technologies in the unlicensed sub-GHz frequency bands, used to realize access networks with star topology which are referred to a \emph{Low-Power Wide Area Networks} (LPWANs). In this paper, we introduce this new approach to provide connectivity in the IoT scenario, discussing its advantages over the established paradigms in terms of efficiency, effectiveness, and architectural design, in particular for the typical Smart Cities applications

    Secure Communication Architecture for Dynamic Energy Management in Smart Grid

    Get PDF
    open access articleSmart grid takes advantage of communication technologies for efficient energy management and utilization. It entails sacrifice from consumers in terms of reducing load during peak hours by using a dynamic energy pricing model. To enable an active participation of consumers in load management, the concept of home energy gateway (HEG) has recently been proposed in the literature. However, the HEG concept is rather new, and the literature still lacks to address challenges related to data representation, seamless discovery, interoperability, security, and privacy. This paper presents the design of a communication framework that effectively copes with the interoperability and integration challenges between devices from different manufacturers. The proposed communication framework offers seamless auto-discovery and zero- con figuration-based networking between heterogeneous devices at consumer sites. It uses elliptic-curve-based security mechanism for protecting consumers' privacy and providing the best possible shield against different types of cyberattacks. Experiments in real networking environment validated that the proposed communication framework is lightweight, secure, portable with low-bandwidth requirement, and flexible to be adopted for dynamic energy management in smart grid
    corecore