7,556 research outputs found

    ECDIS Development Laboratory and Navigation Technology Demonstration Center

    Get PDF
    The U.S. Navy is undergoing a major transition from traditional, paper chart navigation to computer-based electronic charting. The Chief of Naval Operations (CNO) has mandated that all Navy ships will navigate strictly through electronic means by FY07. However, due to some recent groundings, the Navy is now striving to accelerate the full implementation of electronic navigation by FY04. The Naval Oceanographic Office (NAVOCEANO) is making a concerted effort to support this transition with upgrades to state-of-the-art survey ships, instrumentation, and data processing equipment. NAVOCEANO is increasing its capability to rapidly collect and process hydrographic survey data, and to quickly produce new electronic navigational charts in co-production with MMA. In addition to ensuring safe navigation, these new products will include tactical digital overlays for bafflespace awareness. At NAVOCEANO, a new program is under development to expand these capabilities in a joint effort with University of Southern Mississippi\u27s new Hydrographic Sciences Research Program. In September 2001, an ECDIS Development Laboratory and Navigation Technology Demonstration Center will be established. This facility will conduct quality assurance (QA) and test and evaluation @&E) of electronic chart products from NAVOCEANO and other hydrographidoceanographic data providers. This facility will also assist Navy ship personnel in gaining a greater understanding of electronic charting, as well as increased technical proficiency in properly using these systems to safely navigate - particularly in the shallow littoral areas of the world. The ECDIS Development Laboratory is envisioned to become an information clearinghouse and demonstration center on electronic charting technological development. In addition to explaining the range of currently available government data products and services, The Navigation Technology Demonstration Center will showcase the use of electronic charts and its capability when used to avoid groundings and collisions at sea. The Center will The U.S. Navy is undergoing a major transition from traditional, paper chart navigation to computer-based electronic charting. The Chief of Naval Operations (CNO) has mandated that all Navy ships will navigate strictly through electronic means by FY07. However, due to some recent groundings, the Navy is now striving to accelerate the full implementation of electronic navigation by FY04. The Naval Oceanographic Office (NAVOCEANO) is making a concerted effort to support this transition with upgrades to state-of-the-art survey ships, instrumentation, and data processing equipment. NAVOCEANO is increasing its capability to rapidly collect and process hydrographic survey data, and to quickly produce new electronic navigational charts in co-production with MMA. In addition to ensuring safe navigation, these new products will include tactical digital overlays for bafflespace awareness. At NAVOCEANO, a new program is under development to expand these capabilities in a joint effort with University of Southern Mississippi\u27s new Hydrographic Sciences Research Program. In September 2001, an ECDIS Development Laboratory and Navigation Technology Demonstration Center will be established. This facility will conduct quality assurance (QA) and test and evaluation @&E) of electronic chart products from NAVOCEANO and other hydrographidoceanographic data providers. This facility will also assist Navy ship personnel in gaining a greater understanding of electronic charting, as well as increased technical proficiency in properly using these systems to safely navigate - particularly in the shallow littoral areas of the world. The ECDIS Development Laboratory is envisioned to become an information clearinghouse and demonstration center on electronic charting technological development. In addition to explaining the range of currently available government data products and services, The Navigation Technology Demonstration Center will showcase the use of electronic charts and its capability when used to avoid groundings and collisions at sea. The Center will The U.S. Navy is undergoing a major transition from traditional, paper chart navigation to computer-based electronic charting. The Chief of Naval Operations (CNO) has mandated that all Navy ships will navigate strictly through electronic means by FY07. However, due to some recent groundings, the Navy is now striving to accelerate the full implementation of electronic navigation by FY04. The Naval Oceanographic Office (NAVOCEANO) is making a concerted effort to support this transition with upgrades to state-of-the-art survey ships, instrumentation, and data processing equipment. NAVOCEANO is increasing its capability to rapidly collect and process hydrographic survey data, and to quickly produce new electronic navigational charts in co-production with MMA. In addition to ensuring safe navigation, these new products will include tactical digital overlays for bafflespace awareness. At NAVOCEANO, a new program is under development to expand these capabilities in a joint effort with University of Southern Mississippi\u27s new Hydrographic Sciences Research Program. In September 2001, an ECDIS Development Laboratory and Navigation Technology Demonstration Center will be established. This facility will conduct quality assurance (QA) and test and evaluation @&E) of electronic chart products from NAVOCEANO and other hydrographidoceanographic data providers. This facility will also assist Navy ship personnel in gaining a greater understanding of electronic charting, as well as increased technical proficiency in properly using these systems to safely navigate - particularly in the shallow littoral areas of the world. The ECDIS Development Laboratory is envisioned to become an information clearinghouse and demonstration center on electronic charting technological development. In addition to explaining the range of currently available government data products and services, The Navigation Technology Demonstration Center will showcase the use of electronic charts and its capability when used to avoid groundings and collisions at sea. The Center will have commercial-off-the-shelf ECDIS and other electronic chartbased systems. A major focus will be to provide a better appreciation of the limitations electronic chart data produced by both the government and private sector that are derived from century-old hydrographic source data. Another important aspect will be to explain the capability and limitations of using very precise electronic navigation positioning systems (e.g., GPS and Differential GPS) with electronic charting systems. The Navigation Technology Center will also demonstrate the use of tactical digital overlays to provide naval vessels with critical military information that contributes to both safe navigation and increased warfrghting mission capability

    Use of satellite SAR observations integrated in Arctic maritime situational awareness

    Get PDF

    "Are You Planning to Follow Your Route?" The Effect of Route Exchange on Decision Making, Trust, and Safety

    Get PDF
    The Sea Traffic Management (STM) Validation project is a European based initiative which focuses on connecting and updating the maritime world in real time, with efficient information exchange. The purpose of this paper is to evaluate two functions developed during the project: a ship to ship route exchange (S2SREX) function and rendezvous (RDV) information layer, collectively referred to as S2SREX/RDV. S2SREX displays the route segment consisting of the next seven waypoints of the monitored route of a collaborating ship and the RDV layer that predicts a meeting point. S2SREX/RDV provides supplementary information to data acquired by existing navigation systems and is intended to improve situational awareness and safety through a more comprehensive understanding of the surrounding traffic. Chalmers University of Technology and Solent University completed an experiment using twenty-four experienced navigators in bridge simulators. Six traffic scenarios were developed by subject matter experts and tested with and without S2SREX/RDV functionalities. Qualitative data were collected using post-test questionnaires and group debriefs to evaluate the participants\u27 perceptions of S2SREX/RDV in the various traffic scenarios, and quantitative data were collected to assess the ship distances and behavior in relation to the International Regulations for Preventing Collisions at Sea (COLREGs). The results revealed that participants generally trusted the S2SREX/RDV information, and most used S2SREX/RDV for decision support. The quantitative assessment revealed that the COLREGs were breached more often when S2SREX/RDV was used. Experimental findings are discussed in relation to safety, trust, reliance, situational awareness, and human-automation interaction constructs

    Impact of portable piloting units on the situation awareness of maritime pilots perspectives of Danish and West African pilots

    Get PDF

    How to recognise a kick : A cognitive task analysis of drillers’ situation awareness during well operations

    Get PDF
    Acknowledgements This article is based on a doctoral research project of the first author which was sponsored by an international drilling rig operator. The views presented are those of the authors and should not be taken to represent the position or policy of the sponsor. The authors wish to thank the industrial supervisor and the drilling experts for their contribution and patience, as well as Aberdeen Drilling School for allowing the first author to attend one of their well control courses.Peer reviewedPostprin

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Analyzing the Feasibility of an Unmanned Cargo Ship for Different Operational Phases

    Get PDF
    The maritime industry has begun to look into autonomous ships as an alternative to conventional ships due to growing pressure to reduce the environmental impact of maritime transportation, to increase safety, to mitigate the growing challenges in recruiting seafarers, and to increase profit margins. There is a lot of research on the challenges and feasibilities of an autonomous ship. However, there is less discussion on the transition from manned to unmanned ships and the tasks that are feasible to automate before the whole ship is unmanned. This paper investigates the technical and regulatory feasibility of automating different tasks for different operational phases for a large cargo ship. This study shows that a fully unmanned cargo ship is not feasible today, but that some tasks can be automated within the next five years.publishedVersio

    Europe's Space capabilities for the benefit of the Arctic

    Get PDF
    In recent years, the Arctic region has acquired an increasing environmental, social, economic and strategic importance. The Arctic’s fragile environment is both a direct and key indicator of the climate change and requires specific mitigation and adaptation actions. The EU has a clear strategic interest in playing a key role and is actively responding to the impacts of climate change safeguarding the Arctic’s fragile ecosystem, ensuring a sustainable development, particularly in the European part of the Arctic. The European Commission’s Joint Research Centre has recently completed a study aimed at identifying the capabilities and relevant synergies across the four domains of the EU Space Programme: earth observation, satellite navigation, satellite communications, and space situational awareness (SSA). These synergies are expected to be key enablers of new services that will have a high societal impact in the region, which could be developed in a more cost-efficient and rapid manner. Similarly, synergies will also help exploit to its full extent operational services that are already deployed in the Arctic (e.g., the Copernicus emergency service or the Galileo Search and rescue service could greatly benefit from improved satellite communications connectivity in the region).JRC.E.2-Technology Innovation in Securit

    Development of an augmented reality concept for icebreaker assistance and convoy operations

    Get PDF
    A vessel convoy is a complex and high‐risk operation completed during icebreaking operations in the Arctic. Icebreaker navigators need to continuously communicate with their crew while monitoring information such as speed, heading, and distance between vessels in the convoy. This paper presents an augmented reality user interface concept, which aims to support navigators by improving oversight and safety during convoy operations. The concept demonstrates how augmented reality can help to realize a situated user interface that adapts to user’s physical and operational contexts. The concept was developed through a human‐centered design process and tested through a virtual reality simulator in a usability study involving seven mariners. The results suggest that augmented reality has the potential to improve the safety of convoy operations by integrating distributed information with heads‐up access to operation‐critical information. However, the user interface concept is still novel, and further work is needed to develop the concept and safely integrate augmented reality into maritime operations

    Origin and Development of Seamanship Competence

    Get PDF
    Source at https://www.transnav.eu/Article_Origin_and_Development_of_Seamanship_Johansen,62,1229.html.Seafaring is one of the oldest documented human activities, with a rich heritage created by generations of seamen. The first boats were developed several thousand years ago, based on primitive principles, and they were probably not suitable for other than simple purposes. Analyzing the history of boat building shows a gradual change in designs. These design changes were most likely due to improvements, related to different aspects of experiences undergone; the changing activity purposes of the boats; and the continual resolution of a conflict between what is possible and what is desired. Nevertheless, design changes and different improvements were developed in a relationship between experiences gained by sailors and shipbuilders. Therefore, the development of seafaring was probably, both directly and indirectly, based on the experiences of sailors who had gained knowledge of the sea. The first written documentation to support the relationship between sailors and knowledge of the sea is in the Old Testament of the Christian Bible, approximately 950 years before Christ. King Solomon of Israel formed an alliance with the Phoenician king of Tyre, Hiram 1, because he needed the Phoenicians’ ships and naval expertise. “And Hiram sent his servants with the fleet, sailors that have knowledge of the sea, along with the servants of Solomon” (1. King IX – 27). The phrase “sailors with knowledge of the sea” correlates with a partial core of seamanship science. The science of seamanship is a multi-dimensional expression, which concerns seamen’s complete competence in sailing and operating a ship. The purpose of this article is to discuss the origin and development of the ship-operating aspects of seamanship and shed light on aspects of the development and challenges regarding exercise of seamanship competence-related maritime education and training (MET)
    • …
    corecore