870 research outputs found

    Custom-designed motion-based games for older adults: a review of literature in human-computer interaction

    Get PDF
    Many older adults, particularly persons living in senior residences and care homes, lead sedentary lifestyles, which reduces their life expectancy. Motion-based video games encourage physical activity and might be an opportunity for these adults to remain active and engaged; however, research efforts in the field have frequently focused on younger audiences and little is known about the requirements and benefits of motion-based games for elderly players. In this paper, we present an overview of motion-based video games and other interactive technologies for older adults. First, we summarize existing approaches towards the definition of motion-based video games – often referred to as exergames – and suggest a categorization of motion-based applications into active video games, exergames, and augmented sports. Second, we use this scheme to classify case studies addressing design efforts particularly directed towards older adults. Third, we analyze these case studies with a focus on potential target audiences, benefits, challenges in their deployment, and future design opportunities to investigate whether motion-based video games can be applied to encourage physical activity among older adults. In this context, special attention is paid to evaluation routines and their implications regarding the deployment of such games in the daily lives of older adults. The results show that many case studies examine isolated aspects of motion-based game design for older adults, and despite the broad range of issues in motion-based interaction for older adults covered by the sum of all research projects, there appears to be a disconnect between laboratory-based research and the deployment of motion-based video games in the daily lives of senior citizens. Our literature review suggests that despite research results suggesting various benefits of motion-based play for older adults, most work in the field of game design for senior citizens has focused on the implementation of accessible user interfaces, and that little is known about the long-term deployment of video games for this audience, which is a crucial step if these games are to be implemented in activity programs of senior residences, care homes, or in therapy

    CGAMES'2009

    Get PDF

    What does touch tell us about emotions in touchscreen-based gameplay?

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 ACM. It is posted here by permission of ACM for your personal use. Not for redistribution.Nowadays, more and more people play games on touch-screen mobile phones. This phenomenon raises a very interesting question: does touch behaviour reflect the player’s emotional state? If possible, this would not only be a valuable evaluation indicator for game designers, but also for real-time personalization of the game experience. Psychology studies on acted touch behaviour show the existence of discriminative affective profiles. In this paper, finger-stroke features during gameplay on an iPod were extracted and their discriminative power analysed. Based on touch-behaviour, machine learning algorithms were used to build systems for automatically discriminating between four emotional states (Excited, Relaxed, Frustrated, Bored), two levels of arousal and two levels of valence. The results were very interesting reaching between 69% and 77% of correct discrimination between the four emotional states. Higher results (~89%) were obtained for discriminating between two levels of arousal and two levels of valence

    Toward the autism motor signature : gesture patterns during smart tablet gameplay identify children with autism

    Get PDF
    Autism is a developmental disorder evident from infancy. Yet, its clinical identification requires expert diagnostic training. New evidence indicates disruption to motor timing and integration may underpin the disorder, providing a potential new computational marker for its early identification. In this study, we employed smart tablet computers with touch-sensitive screens and embedded inertial movement sensors to record the movement kinematics and gesture forces made by 37 children 3-6 years old with autism and 45 age- and gender-matched children developing typically. Machine learning analysis of the children’s motor patterns identified autism with up to 93% accuracy. Analysis revealed these patterns consisted of greater forces at contact and with a different distribution of forces within a gesture, and gesture kinematics were faster and larger, with more distal use of space. These data support the notion disruption to movement is core feature of autism, and demonstrate autism can be computationally assessed by fun, smart device gameplay

    Motion-Based Video Games for Older Adults in Long-Term Care

    Get PDF
    Older adults in residential care often lead sedentary lifestyles despite physical and cognitive activities being crucial for their well-being. Care facilities face the challenge of encouraging their residents to participate in leisure activities, but as the impact of age-related changes grows, few activities remain accessible. Video games in general – and motion-based games in particular – hold the promise of providing mental, physical and social stimulation for older adults. However, the accessibility of commercially available games for older adults is not considered during the development process. Therefore, many older adults are unable to obtain any of the benefits. In my dissertation, this issue is addressed through the development of motion-based game controls that specifically address the needs of older adults. The first part of this thesis lays the foundation by providing an overview of motion-based game interaction for older adults. The second part demonstrates the general feasibility of motion-based game controls for older adults, develops full-body motion-based and wheelchair-based game controls, and provides guidelines for accessible motion-based game interaction for institutionalized older adults. The third part of this thesis builds on these results and presents two case studies. Motion-based controls are applied and further evaluated in game design projects addressing the special needs of older adults in long-term care, with the first case study focusing on long-term player engagement and the role of volunteers in care homes, and the second case study focusing on connecting older adults and caregivers through play. The results of this dissertation show that motion-based game controls can be designed to be accessible to institutionalized older adults. My work also shows that older adults enjoy engaging with motion-based games, and that such games have the potential of positively influencing them by providing a physically and mentally stimulating leisure activity. Furthermore, results from the case studies reveal the benefits and limitations of computer games in long-term care. Fostering inclusive efforts in game design and ensuring that motion-based video games are accessible to broad audiences is an important step toward allowing all players to obtain the full benefits of games, thereby contributing to the quality of life of diverse audiences

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Database of Video Games and Their Therapeutic Properties

    Get PDF
    There are reported to be 2.96 billion video game players in the world as of 2021 and this number is expected to grow to 3.32 billion by the year 2024. Of that total, 215.5 million video game players live in the United States with a reported average age of 33 years old. Thousands of commercial video games are released every year. There is evidence to support video game technology use as therapeutic media however it predominately utilizes outdated technology or technology designed for a specific purpose also called “serious games.” The problem is that OT practitioners are unaware of the potential therapeutic properties of video games they have not played, so are unable to integrate unfamiliar video games as therapeutic media in clinical practice. The purpose of this capstone project is to develop an online database of commercial video games, and their therapeutic properties, to facilitate their use as therapeutic media in OT practice. To address this problem a webpage was developed in partnership with the Family Gaming Database that cataloged 10 commercial video games from commercially available video game subscription services and the Nintendo Switch. The 10 games were subject to an activity analysis based on the AMPS to determine their therapeutic potential. The resulting webpage contains three main lists in which filters can be applied in order to display games that meet a specific desired criterion. Applicable filters include platform, age rating, difficulty, and specific accessibility features. Keywords: database, occupational therapy, video game, video game

    A Person-Centric Design Framework for At-Home Motor Learning in Serious Games

    Get PDF
    abstract: In motor learning, real-time multi-modal feedback is a critical element in guided training. Serious games have been introduced as a platform for at-home motor training due to their highly interactive and multi-modal nature. This dissertation explores the design of a multimodal environment for at-home training in which an autonomous system observes and guides the user in the place of a live trainer, providing real-time assessment, feedback and difficulty adaptation as the subject masters a motor skill. After an in-depth review of the latest solutions in this field, this dissertation proposes a person-centric approach to the design of this environment, in contrast to the standard techniques implemented in related work, to address many of the limitations of these approaches. The unique advantages and restrictions of this approach are presented in the form of a case study in which a system entitled the "Autonomous Training Assistant" consisting of both hardware and software for guided at-home motor learning is designed and adapted for a specific individual and trainer. In this work, the design of an autonomous motor learning environment is approached from three areas: motor assessment, multimodal feedback, and serious game design. For motor assessment, a 3-dimensional assessment framework is proposed which comprises of 2 spatial (posture, progression) and 1 temporal (pacing) domains of real-time motor assessment. For multimodal feedback, a rod-shaped device called the "Intelligent Stick" is combined with an audio-visual interface to provide feedback to the subject in three domains (audio, visual, haptic). Feedback domains are mapped to modalities and feedback is provided whenever the user's performance deviates from the ideal performance level by an adaptive threshold. Approaches for multi-modal integration and feedback fading are discussed. Finally, a novel approach for stealth adaptation in serious game design is presented. This approach allows serious games to incorporate motor tasks in a more natural way, facilitating self-assessment by the subject. An evaluation of three different stealth adaptation approaches are presented and evaluated using the flow-state ratio metric. The dissertation concludes with directions for future work in the integration of stealth adaptation techniques across the field of exergames.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Utilizing gravity in movement-based games and play

    Get PDF
    This paper seeks to expand the understanding of gravity as a powerful but underexplored design resource for movement-based games and play. We examine how gravity has been utilized and manipulated in digital, physical, and mixed reality games and sports, considering five central and gravity-related facets of user experience: realism, affect, challenge, movement diversity, and sociality. For each facet, we suggest new directions for expanding the field of movement-based games and play, for example through novel combinations of physical and digital elements. Our primary contribution is a structured articulation of a novel point of view for designing games and interactions for the moving body. Additionally, we point out new research directions, and our conceptual framework can be used as a design tool. We demonstrate this in 1) creating and evaluating a novel gravity-based game mechanic, and 2) analyzing an existing movement-based game and suggesting future improvements
    • 

    corecore