394 research outputs found

    Recurring Query Processing on Big Data

    Get PDF
    The advances in hardware, software, and networks have enabled applications from business enterprises, scientific and engineering disciplines, to social networks, to generate data at unprecedented volume, variety, velocity, and varsity not possible before. Innovation in these domains is thus now hindered by their ability to analyze and discover knowledge from the collected data in a timely and scalable fashion. To facilitate such large-scale big data analytics, the MapReduce computing paradigm and its open-source implementation Hadoop is one of the most popular and widely used technologies. Hadoop\u27s success as a competitor to traditional parallel database systems lies in its simplicity, ease-of-use, flexibility, automatic fault tolerance, superior scalability, and cost effectiveness due to its use of inexpensive commodity hardware that can scale petabytes of data over thousands of machines. Recurring queries, repeatedly being executed for long periods of time on rapidly evolving high-volume data, have become a bedrock component in most of these analytic applications. Efficient execution and optimization techniques must be designed to assure the responsiveness and scalability of these recurring queries. In this dissertation, we thoroughly investigate topics in the area of recurring query processing on big data. In this dissertation, we first propose a novel scalable infrastructure called Redoop that treats recurring query over big evolving data as first class citizens during query processing. This is in contrast to state-of-the-art MapReduce/Hadoop system experiencing significant challenges when faced with recurring queries including redundant computations, significant latencies, and huge application development efforts. Redoop offers innovative window-aware optimization techniques for recurring query execution including adaptive window-aware data partitioning, window-aware task scheduling, and inter-window caching mechanisms. Redoop retains the fault-tolerance of MapReduce via automatic cache recovery and task re-execution support as well. Second, we address the crucial need to accommodate hundreds or even thousands of recurring analytics queries that periodically execute over frequently updated data sets, e.g., latest stock transactions, new log files, or recent news feeds. For many applications, such recurring queries come with user-specified service-level agreements (SLAs), commonly expressed as the maximum allowed latency for producing results before their merits decay. On top of Redoop, we built a scalable multi-query sharing engine tailored for recurring workloads in the MapReduce infrastructure, called Helix. Helix deploys new sliced window-alignment techniques to create sharing opportunities among recurring queries without introducing additional I/O overheads or unnecessary data scans. Furthermore, Helix introduces a cost/benefit model for creating a sharing plan among the recurring queries, and a scheduling strategy for executing them to maximize the SLA satisfaction. Third, recurring analytics queries tend to be expensive, especially when query processing consumes data sets in the hundreds of terabytes or more. Time sensitive recurring queries, such as fraud detection, often come with tight response time constraints as query deadlines. Data sampling is a popular technique for computing approximate results with an acceptable error bound while reducing high-demand resource consumption and thus improving query turnaround times. In this dissertation, we propose the first fast approximate query engine for recurring workloads in the MapReduce infrastructure, called Faro. Faro introduces two key innovations: (1) a deadline-aware sampling strategy that builds samples from the original data with reduced sample sizes compared to uniform sampling, and (2) adaptive resource allocation strategies that maximally improve the approximate results while assuring to still meet the response time requirements specified in recurring queries. In our comprehensive experimental study of each part of this dissertation, we demonstrate the superiority of the proposed strategies over state-of-the-art techniques in scalability, effectiveness, as well as robustness

    Measuring and Managing Answer Quality for Online Data-Intensive Services

    Full text link
    Online data-intensive services parallelize query execution across distributed software components. Interactive response time is a priority, so online query executions return answers without waiting for slow running components to finish. However, data from these slow components could lead to better answers. We propose Ubora, an approach to measure the effect of slow running components on the quality of answers. Ubora randomly samples online queries and executes them twice. The first execution elides data from slow components and provides fast online answers; the second execution waits for all components to complete. Ubora uses memoization to speed up mature executions by replaying network messages exchanged between components. Our systems-level implementation works for a wide range of platforms, including Hadoop/Yarn, Apache Lucene, the EasyRec Recommendation Engine, and the OpenEphyra question answering system. Ubora computes answer quality much faster than competing approaches that do not use memoization. With Ubora, we show that answer quality can and should be used to guide online admission control. Our adaptive controller processed 37% more queries than a competing controller guided by the rate of timeouts.Comment: Technical Repor

    Outlier Detection In Big Data

    Get PDF
    The dissertation focuses on scaling outlier detection to work both on huge static as well as on dynamic streaming datasets. Outliers are patterns in the data that do not conform to the expected behavior. Outlier detection techniques are broadly applied in applications ranging from credit fraud prevention, network intrusion detection to stock investment tactical planning. For such mission critical applications, a timely response often is of paramount importance. Yet the processing of outlier detection requests is of high algorithmic complexity and resource consuming. In this dissertation we investigate the challenges of detecting outliers in big data -- in particular caused by the high velocity of streaming data, the big volume of static data and the large cardinality of the input parameter space for tuning outlier mining algorithms. Effective optimization techniques are proposed to assure the responsiveness of outlier detection in big data. In this dissertation we first propose a novel optimization framework called LEAP to continuously detect outliers over data streams. The continuous discovery of outliers is critical for a large range of online applications that monitor high volume continuously evolving streaming data. LEAP encompasses two general optimization principles that utilize the rarity of the outliers and the temporal priority relationships among stream data points. Leveraging these two principles LEAP not only is able to continuously deliver outliers with respect to a set of popular outlier models, but also provides near real-time support for processing powerful outlier analytics workloads composed of large numbers of outlier mining requests with various parameter settings. Second, we develop a distributed approach to efficiently detect outliers over massive-scale static data sets. In this big data era, as the volume of the data advances to new levels, the power of distributed compute clusters must be employed to detect outliers in a short turnaround time. In this research, our approach optimizes key factors determining the efficiency of distributed data analytics, namely, communication costs and load balancing. In particular we prove the traditional frequency-based load balancing assumption is not effective. We thus design a novel cost-driven data partitioning strategy that achieves load balancing. Furthermore, we abandon the traditional one detection algorithm for all compute nodes approach and instead propose a novel multi-tactic methodology which adaptively selects the most appropriate algorithm for each node based on the characteristics of the data partition assigned to it. Third, traditional outlier detection systems process each individual outlier detection request instantiated with a particular parameter setting one at a time. This is not only prohibitively time-consuming for large datasets, but also tedious for analysts as they explore the data to hone in on the most appropriate parameter setting or on the desired results. We thus design an interactive outlier exploration paradigm that is not only able to answer traditional outlier detection requests in near real-time, but also offers innovative outlier analytics tools to assist analysts to quickly extract, interpret and understand the outliers of interest. Our experimental studies including performance evaluation and user studies conducted on real world datasets including stock, sensor, moving object, and Geolocation datasets confirm both the effectiveness and efficiency of the proposed approaches

    Interactive Data Exploration of Distributed Raw Files: A Systematic Mapping Study

    Get PDF
    When exploring big amounts of data without a clear target, providing an interactive experience becomes really dif cult, since this tentative inspection usually defeats any early decision on data structures or indexing strategies. This is also true in the physics domain, speci cally in high-energy physics, where the huge volume of data generated by the detectors are normally explored via C++ code using batch processing, which introduces a considerable latency. An interactive tool, when integrated into the existing data management systems, can add a great value to the usability of these platforms. Here, we intend to review the current state-of-the-art of interactive data exploration, aiming at satisfying three requirements: access to raw data les, stored in a distributed environment, and with a reasonably low latency. This paper follows the guidelines for systematic mapping studies, which is well suited for gathering and classifying available studies.We summarize the results after classifying the 242 papers that passed our inclusion criteria. While there are many proposed solutions that tackle the problem in different manners, there is little evidence available about their implementation in practice. Almost all of the solutions found by this paper cover a subset of our requirements, with only one partially satisfying the three. The solutions for data exploration abound. It is an active research area and, considering the continuous growth of data volume and variety, is only to become harder. There is a niche for research on a solution that covers our requirements, and the required building blocks are there

    Resilin: Elastic MapReduce over Multiple Clouds

    Get PDF
    The MapReduce programming model, introduced by Google, offers a simple and efficient way of performing distributed computation over large data sets. Although Google's implementation is proprietary, MapReduce can be leveraged by anyone using the free and open-source Apache Hadoop framework. To simplify the usage of Hadoop in the cloud, Amazon Web Services offers Elastic MapReduce, a web service enabling users to run MapReduce jobs. Elastic MapReduce takes care of resource provisioning, Hadoop configuration and performance tuning, data staging, fault tolerance, etc. This service drastically reduces the entry barrier to perform MapReduce computations in the cloud, allowing users to concentrate on the problem to solve. However, Elastic MapReduce is restricted to Amazon EC2 resources, and is provided at an additional cost. In this paper, we present Resilin, a system implementing the Elastic MapReduce API with resources from clouds other than Amazon EC2, such as private and scientific clouds. Furthermore, we explore a feature going beyond the current Amazon Elastic MapReduce offering: performing MapReduce computations over multiple distributed clouds. The evaluation of Resilin shows the benefits of running computations on more than one cloud. While not being the most efficient way to perform Hadoop computations, it solves the problem of resource availability and adds more flexibility regarding the type/price of resource.Le modèle de programmation MapReduce, introduit par Google, offre un moyen simple et efficace de réaliser des calculs distribués sur de grandes quantités de données. Bien que la mise en oeuvre de Google soit propriétaire, MapReduce peut être utilisé librement avec l'environnement Hadoop. Pour simplifier l'utilisation de Hadoop dans les nuages informatiques, Amazon Web Services offre Elastic MapReduce, un service web qui permet aux utilisateurs d'exécuter des applications MapReduce. Il prend en charge l'allocation de ressources, la configuration et l'optimisation de Hadoop, la copie des données, la tolérance aux fautes, etc. Ce service facilite l'exécution d'applications MapReduce dans les nuages informatiques, permettant ainsi aux utilisateurs de se concentrer sur la résolution de leur problème plutôt que sur la gestion de la plate-forme d'exécution. Elastic MapReduce est limité á l'utilisation de ressources fournies par Amazon EC2 et est proposé à un coût additionnel. Dans cet article, nous présentons Resilin, un système mettant en oeuvre l'API Elastic MapReduce avec des ressources provenant d'autres nuages informatiques que Amazon EC2, tels que les nuages privés ou communautaires. De plus, nous explorons une fonctionnalité nouvelle par rapport au service offert par Amazon Elastic MapReduce: l'exécution d'applications MapReduce sur plusieurs nuages géographiquement distribués. L'évaluation de Resilin montre les avantages liés à l'utilisation de plus d'un nuage pour l'exécution d'applications MapReduce. Bien qu'il ne fournisse pas la solution la plus efficace pour l'exécution d'applications MapReduce, Resilin résout le problème de la disponibilité des ressources et ajoute une plus grande flexibilité en ce qui concerne le type et le prix des ressources

    Contextual Anomaly Detection Framework for Big Sensor Data

    Get PDF
    Performing predictive modelling, such as anomaly detection, in Big Data is a difficult task. This problem is compounded as more and more sources of Big Data are generated from environmental sensors, logging applications, and the Internet of Things. Further, most current techniques for anomaly detection only consider the content of the data source, i.e. the data itself, without concern for the context of the data. As data becomes more complex it is increasingly important to bias anomaly detection techniques for the context, whether it is spatial, temporal, or semantic. The work proposed in this thesis outlines a contextual anomaly detection framework for use in Big sensor Data systems. The framework uses a well-defined content anomaly detection algorithm for real-time point anomaly detection. Additionally, we present a post-processing context-aware anomaly detection algorithm based on sensor profiles, which are groups of contextually similar sensors generated by a multivariate clustering algorithm. The contextual anomaly detection framework is evaluated with respect to two different Big sensor Data data sets; one for electrical sensors, and another for temperature sensors within a building

    Low-latency, query-driven analytics over voluminous multidimensional, spatiotemporal datasets

    Get PDF
    2017 Summer.Includes bibliographical references.Ubiquitous data collection from sources such as remote sensing equipment, networked observational devices, location-based services, and sales tracking has led to the accumulation of voluminous datasets; IDC projects that by 2020 we will generate 40 zettabytes of data per year, while Gartner and ABI estimate 20-35 billion new devices will be connected to the Internet in the same time frame. The storage and processing requirements of these datasets far exceed the capabilities of modern computing hardware, which has led to the development of distributed storage frameworks that can scale out by assimilating more computing resources as necessary. While challenging in its own right, storing and managing voluminous datasets is only the precursor to a broader field of study: extracting knowledge, insights, and relationships from the underlying datasets. The basic building block of this knowledge discovery process is analytic queries, encompassing both query instrumentation and evaluation. This dissertation is centered around query-driven exploratory and predictive analytics over voluminous, multidimensional datasets. Both of these types of analysis represent a higher-level abstraction over classical query models; rather than indexing every discrete value for subsequent retrieval, our framework autonomously learns the relationships and interactions between dimensions in the dataset (including time series and geospatial aspects), and makes the information readily available to users. This functionality includes statistical synopses, correlation analysis, hypothesis testing, probabilistic structures, and predictive models that not only enable the discovery of nuanced relationships between dimensions, but also allow future events and trends to be predicted. This requires specialized data structures and partitioning algorithms, along with adaptive reductions in the search space and management of the inherent trade-off between timeliness and accuracy. The algorithms presented in this dissertation were evaluated empirically on real-world geospatial time-series datasets in a production environment, and are broadly applicable across other storage frameworks
    corecore