1,081 research outputs found

    Medians and Beyond: New Aggregation Techniques for Sensor Networks

    Full text link
    Wireless sensor networks offer the potential to span and monitor large geographical areas inexpensively. Sensors, however, have significant power constraint (battery life), making communication very expensive. Another important issue in the context of sensor-based information systems is that individual sensor readings are inherently unreliable. In order to address these two aspects, sensor database systems like TinyDB and Cougar enable in-network data aggregation to reduce the communication cost and improve reliability. The existing data aggregation techniques, however, are limited to relatively simple types of queries such as SUM, COUNT, AVG, and MIN/MAX. In this paper we propose a data aggregation scheme that significantly extends the class of queries that can be answered using sensor networks. These queries include (approximate) quantiles, such as the median, the most frequent data values, such as the consensus value, a histogram of the data distribution, as well as range queries. In our scheme, each sensor aggregates the data it has received from other sensors into a fixed (user specified) size message. We provide strict theoretical guarantees on the approximation quality of the queries in terms of the message size. We evaluate the performance of our aggregation scheme by simulation and demonstrate its accuracy, scalability and low resource utilization for highly variable input data sets

    Query Workload-Aware Index Structures for Range Searches in 1D, 2D, and High-Dimensional Spaces

    Get PDF
    abstract: Most current database management systems are optimized for single query execution. Yet, often, queries come as part of a query workload. Therefore, there is a need for index structures that can take into consideration existence of multiple queries in a query workload and efficiently produce accurate results for the entire query workload. These index structures should be scalable to handle large amounts of data as well as large query workloads. The main objective of this dissertation is to create and design scalable index structures that are optimized for range query workloads. Range queries are an important type of queries with wide-ranging applications. There are no existing index structures that are optimized for efficient execution of range query workloads. There are also unique challenges that need to be addressed for range queries in 1D, 2D, and high-dimensional spaces. In this work, I introduce novel cost models, index selection algorithms, and storage mechanisms that can tackle these challenges and efficiently process a given range query workload in 1D, 2D, and high-dimensional spaces. In particular, I introduce the index structures, HCS (for 1D spaces), cSHB (for 2D spaces), and PSLSH (for high-dimensional spaces) that are designed specifically to efficiently handle range query workload and the unique challenges arising from their respective spaces. I experimentally show the effectiveness of the above proposed index structures by comparing with state-of-the-art techniques.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Dragon: Multidimensional Range Queries on Distributed Aggregation Trees,

    Get PDF
    Distributed query processing is of paramount importance in next-generation distribution services, such as Internet of Things (IoT) and cyber-physical systems. Even if several multi-attribute range queries supports have been proposed for peer-to-peer systems, these solutions must be rethought to fully meet the requirements of new computational paradigms for IoT, like fog computing. This paper proposes dragon, an ecient support for distributed multi-dimensional range query processing targeting ecient query resolution on highly dynamic data. In dragon nodes at the edges of the network collect and publish multi-dimensional data. The nodes collectively manage an aggregation tree storing data digests which are then exploited, when resolving queries, to prune the sub-trees containing few or no relevant matches. Multi-attribute queries are managed by linearising the attribute space through space lling curves. We extensively analysed dierent aggregation and query resolution strategies in a wide spectrum of experimental set-ups. We show that dragon manages eciently fast changing data values. Further, we show that dragon resolves queries by contacting a lower number of nodes when compared to a similar approach in the state of the art

    High-Dimensional Indexing for Video Retrieval

    Get PDF

    Integrating data warehouses with web data : a survey

    Get PDF
    This paper surveys the most relevant research on combining Data Warehouse (DW) and Web data. It studies the XML technologies that are currently being used to integrate, store, query, and retrieve Web data and their application to DWs. The paper reviews different DW distributed architectures and the use of XML languages as an integration tool in these systems. It also introduces the problem of dealing with semistructured data in a DW. It studies Web data repositories, the design of multidimensional databases for XML data sources, and the XML extensions of OnLine Analytical Processing techniques. The paper addresses the application of information retrieval technology in a DW to exploit text-rich document collections. The authors hope that the paper will help to discover the main limitations and opportunities that offer the combination of the DW and the Web fields, as well as to identify open research line
    • …
    corecore