95 research outputs found

    Space for Two to Think: Large, High-Resolution Displays for Co-located Collaborative Sensemaking

    Get PDF
    Large, high-resolution displays carry the potential to enhance single display groupware collaborative sensemaking for intelligence analysis tasks by providing space for common ground to develop, but it is up to the visual analytics tools to utilize this space effectively. In an exploratory study, we compared two tools (Jigsaw and a document viewer), which were adapted to support multiple input devices, to observe how the large display space was used in establishing and maintaining common ground during an intelligence analysis scenario using 50 textual documents. We discuss the spatial strategies employed by the pairs of participants, which were largely dependent on tool type (data-centric or function-centric), as well as how different visual analytics tools used collaboratively on large, high-resolution displays impact common ground in both process and solution. Using these findings, we suggest design considerations to enable future co-located collaborative sensemaking tools to take advantage of the benefits of collaborating on large, high-resolution displays

    Effects of Sensemaking Translucence on Distributed Collaborative Analysis

    Full text link
    Collaborative sensemaking requires that analysts share their information and insights with each other, but this process of sharing runs the risks of prematurely focusing the investigation on specific suspects. To address this tension, we propose and test an interface for collaborative crime analysis that aims to make analysts more aware of their sensemaking processes. We compare our sensemaking translucence interface to a standard interface without special sensemaking features in a controlled laboratory study. We found that the sensemaking translucence interface significantly improved clue finding and crime solving performance, but that analysts rated the interface lower on subjective measures than the standard interface. We conclude that designing for distributed sensemaking requires balancing task performance vs. user experience and real-time information sharing vs. data accuracy.Comment: ACM SIGCHI CSCW 201

    Supporting the sensemaking process in visual analytics

    Get PDF
    Visual analytics is the science of analytical reasoning facilitated by interactive visual interfaces. It involves interactive exploration of data using visualizations and automated data analysis to gain insight, and to ultimately make better decisions. It aims to support the sensemaking process in which information is collected, organized and analyzed to form new knowledge and inform further action. Interactive visual exploration of the data can lead to many discoveries in terms of relations, patterns, outliers and so on. It is difficult for the human working memory to keep track of all findings during a visual analysis. Also, synthesis of many different findings and relations between those findings increase the information overload and thereby hinders the sensemaking process further. The central theme of this dissertation is How to support users in their sensemaking process during interactive exploration of data? To support the sensemaking process in visual analytics, we mainly focus on how to support users to capture, reuse, review, share, and present the key aspects of interest concerning the analysis process and the findings during interactive exploration of data. For this, we have developed generic models and tools that enable users to capture findings with provenance, and construct arguments; and to review, revise and share their visual analysis. First, we present a sensemaking framework for visual analytics that contains three linked views: a data view, a navigation view and a knowledge view for supporting the sense-making process. The data view offers interactive data visualization tools. The navigation view automatically captures the interaction history using a semantically rich action model and provides an overview of the analysis structure. The knowledge view is a basic graphics editor that helps users to record findings with provenance and to organize findings into claims using diagramming techniques. Users can exploit automatically captured interaction history and manually recorded findings to review and revise their visual analysis. Thus, the analysis process can be archived and shared with others for collaborative visual analysis. Secondly, we enable analysts to capture data selections as semantic zones during an analysis, and to reuse these zones on different subsets of data. We present a Select & Slice table that helps analysts to capture, manipulate, and reuse these zones more explicitly during exploratory data analysis. Users can reuse zones, combine zones, and compare and trace items of interest across different semantic zones and data slices. Finally, exploration overviews and searching techniques based on keywords, content similarity, and context helped analysts to develop awareness over the key aspects of the exploration concerning the analysis process and findings. On one hand, they can proactively search analysis processes and findings for reviewing purposes. On the other hand, they can use the system to discover implicit connections between findings and the current line of inquiry, and recommend these related findings during an interactive data exploration. We implemented the models and tools described in this dissertation in Aruvi and HARVEST. Using Aruvi and HARVEST, we studied the implications of these models on a user’s sensemaking process. We adopted the short-term and long-term case studies approach to study support offered by these tools for the sensemaking process. The observations of the case studies were used to evaluate the models

    HEALTH GeoJunction: place-time-concept browsing of health publications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The volume of health science publications is escalating rapidly. Thus, keeping up with developments is becoming harder as is the task of finding important cross-domain connections. When geographic location is a relevant component of research reported in publications, these tasks are more difficult because standard search and indexing facilities have limited or no ability to identify geographic foci in documents. This paper introduces <it><smcaps>HEALTH</smcaps> GeoJunction</it>, a web application that supports researchers in the task of quickly finding scientific publications that are relevant geographically and temporally as well as thematically.</p> <p>Results</p> <p><it><smcaps>HEALTH</smcaps> GeoJunction </it>is a geovisual analytics-enabled web application providing: (a) web services using computational reasoning methods to extract place-time-concept information from bibliographic data for documents and (b) visually-enabled place-time-concept query, filtering, and contextualizing tools that apply to both the documents and their extracted content. This paper focuses specifically on strategies for visually-enabled, iterative, facet-like, place-time-concept filtering that allows analysts to quickly drill down to scientific findings of interest in PubMed abstracts and to explore relations among abstracts and extracted concepts in place and time. The approach enables analysts to: find publications without knowing all relevant query parameters, recognize unanticipated geographic relations within and among documents in multiple health domains, identify the thematic emphasis of research targeting particular places, notice changes in concepts over time, and notice changes in places where concepts are emphasized.</p> <p>Conclusions</p> <p>PubMed is a database of over 19 million biomedical abstracts and citations maintained by the National Center for Biotechnology Information; achieving quick filtering is an important contribution due to the database size. Including geography in filters is important due to rapidly escalating attention to geographic factors in public health. The implementation of mechanisms for iterative place-time-concept filtering makes it possible to narrow searches efficiently and quickly from thousands of documents to a small subset that meet place-time-concept constraints. Support for a <it>more-like-this </it>query creates the potential to identify unexpected connections across diverse areas of research. Multi-view visualization methods support understanding of the place, time, and concept components of document collections and enable comparison of filtered query results to the full set of publications.</p

    (Neg)Entropic scenarios affecting the wicked design spaces of knowledge management systems

    Get PDF
    CITATION: Schmitt, U. 2020. (Neg)Entropic scenarios affecting the wicked design spaces of knowledge management systems. Entropy, 22(2):169, doi:10.3390/e22020169.The original publication is available at https://www.mdpi.comThe envisioned embracing of thriving knowledge societies is increasingly compromised by threatening perceptions of information overload, attention poverty, opportunity divides, and career fears. This paper traces the roots of these symptoms back to causes of information entropy and structural holes, invisible private and undiscoverable public knowledge which characterize the sad state of our current knowledge management and creation practices. As part of an ongoing design science research and prototyping project, the article’s (neg)entropic perspectives complement a succession of prior multi-disciplinary publications. Looking forward, it proposes a novel decentralized generative knowledge management approach that prioritizes the capacity development of autonomous individual knowledge workers not at the expense of traditional organizational knowledge management systems but as a viable means to foster their fruitful co-evolution. The article, thus, informs relevant stakeholders about the current unsustainable status quo inhibiting knowledge workers; it presents viable remedial options (as a prerequisite for creating the respective future generative Knowledge Management (KM) reality) to afford a sustainable solution with the generative potential to evolve into a prospective general-purpose technology.https://www.mdpi.com/1099-4300/22/2/169Publisher's versio

    Visual Event Cueing in Linked Spatiotemporal Data

    Get PDF
    abstract: The media disperses a large amount of information daily pertaining to political events social movements, and societal conflicts. Media pertaining to these topics, no matter the format of publication used, are framed a particular way. Framing is used not for just guiding audiences to desired beliefs, but also to fuel societal change or legitimize/delegitimize social movements. For this reason, tools that can help to clarify when changes in social discourse occur and identify their causes are of great use. This thesis presents a visual analytics framework that allows for the exploration and visualization of changes that occur in social climate with respect to space and time. Focusing on the links between data from the Armed Conflict Location and Event Data Project (ACLED) and a streaming RSS news data set, users can be cued into interesting events enabling them to form and explore hypothesis. This visual analytics framework also focuses on improving intervention detection, allowing users to hypothesize about correlations between events and happiness levels, and supports collaborative analysis.Dissertation/ThesisMasters Thesis Computer Science 201

    Making sense of strangers' expertise from digital artifacts

    Full text link
    In organizations, individuals typically rely on their personal networks to obtain expertise when faced with ill-defined problems that require answers that are beyond the scope of their own knowledge. However, individuals cannot always get the needed expertise from their local colleagues. This issue is particularly acute for members in large geographically dispersed organizations since it is difficult to know ?who knows what? among numerous colleagues. The proliferation of social computing technologies such as blogs, online forums, social tags and bookmarks, and social network connection information have expanded the reach and ease at which knowledge workers may become aware of others? expertise. While all these technologies facilitate access to a stranger that can potentially provide needed expertise or advice, there has been little theoretical work on how individuals actually go about this process. I refer to the process of gathering complex, changing and potentially equivocal information, and comprehending it by connecting nuggets of information from many sources to answer vague, non-procedural questions as the process of ?sensemaking?. Through a study of 81 fulltime IBM employees in 21 countries, I look at how existing models and theories of sensemaking and information search may be inadequate to describe the ?people sensemaking? process individuals go through when considering contacting strangers for expertise. Using signaling theory as an interpretive framework, I describe how certain ?signals? in various social software are hard to fake, and are thus more reliable indicators of expertise, approachability, and responsiveness. This research has the potential to inform models of sensemaking and information search when the search is for people, as opposed to documents

    Making Sense of Document Collections with Map-Based Visualizations

    Get PDF
    As map-based visualizations of documents become more ubiquitous, there is a greater need for them to support intellectual and creative high-level cognitive activities with collections of non-cartographic materials -- documents. This dissertation concerns the conceptualization of map-based visualizations as tools for sensemaking and collection understanding. As such, map-based visualizations would help people use georeferenced documents to develop understanding, gain insight, discover knowledge, and construct meaning. This dissertation explores the role of graphical representations (such as maps, Kohonen maps, pie charts, and other) and interactions with them for developing map-based visualizations capable of facilitating sensemaking activities such as collection understanding. While graphical representations make document collections more perceptually and cognitively accessible, interactions allow users to adapt representations to users’ contextual needs. By interacting with representations of documents or collections and being able to construct representations of their own, people are better able to make sense of information, comprehend complex structures, and integrate new information into their existing mental models. In sum, representations and interactions may reduce cognitive load and consequently expedite the overall time necessary for completion of sensemaking activities, which typically take much time to accomplish. The dissertation proceeds in three phases. The first phase develops a conceptual framework for translating ontological properties of collections to representations and for supporting visual tasks by means of graphical representations. The second phase concerns the cognitive benefits of interaction. It conceptualizes how interactions can help people during complex sensemaking activities. Although the interactions are explained on the example of a prototype built with Google Maps, they are independent iv of Google Maps and can be applicable to various other technologies. The third phase evaluates the utility, analytical capabilities and usability of the additional representations when users interact with a visualization prototype – VIsual COLlection EXplorer. The findings suggest that additional representations can enhance understanding of map-based visualizations of library collections: specifically, they can allow users to see trends, gaps, and patterns in ontological properties of collections
    • …
    corecore