636 research outputs found

    Design and implementation of the Quarc network on-chip

    Get PDF
    Networks-on-Chip (NoC) have emerged as alternative to buses to provide a packet-switched communication medium for modular development of large Systems-on-Chip. However, to successfully replace its predecessor, the NoC has to be able to efficiently exchange all types of traffic including collective communications. The latter is especially important for e.g. cache updates in multicore systems. The Quarc NoC architecture has been introduced as a Networks-on-Chip which is highly efficient in exchanging all types of traffic including broadcast and multicast. In this paper we present the hardware implementation of the switch architecture and the network adapter (transceiver) of the Quarc NoC. Moreover, the paper presents an analysis and comparison of the cost and performance between the Quarc and the Spidergon NoCs implemented in Verilog targeting the Xilinx Virtex FPGA family. We demonstrate a dramatic improvement in performance over the Spidergon especially for broadcast traffic, at no additional hardware cost

    Modeling high-performance wormhole NoCs for critical real-time embedded systems

    Get PDF
    Manycore chips are a promising computing platform to cope with the increasing performance needs of critical real-time embedded systems (CRTES). However, manycores adoption by CRTES industry requires understanding task's timing behavior when their requests use manycore's network-on-chip (NoC) to access hardware shared resources. This paper analyzes the contention in wormhole-based NoC (wNoC) designs - widely implemented in the high-performance domain - for which we introduce a new metric: worst-contention delay (WCD) that captures wNoC impact on worst-case execution time (WCET) in a tighter manner than the existing metric, worst-case traversal time (WCTT). Moreover, we provide an analytical model of the WCD that requests can suffer in a wNoC and we validate it against wNoC designs resembling those in the Tilera-Gx36 and the Intel-SCC 48-core processors. Building on top of our WCD analytical model, we analyze the impact on WCD that different design parameters such as the number of virtual channels, and we make a set of recommendations on what wNoC setups to use in the context of CRTES.Peer ReviewedPostprint (author's final draft

    An efficient 2D router architecture for extending the performance of inhomogeneous 3D NoC-based multi-core architectures

    Get PDF
    To meet the performance and scalability demands of the fast-paced technological growth towards exascale and Big-Data processing with the performance bottleneck of conventional metal based interconnects, alternative interconnect fabrics such as inhomogeneous three dimensional integrated Network-on-Chip (3D NoC) has emanated as a cost-effective solution for emerging multi-core design. However, these interconnects trade-off optimized performance for cost by restricting the number of area and power hungry 3D routers. Consequently, in this paper, we propose a low-latency adaptive router with a low-complexity single-cycle bypassing mechanism to alleviate the performance degradation due to the slow 2D routers in inhomogeneous 3D NoCs. By combining the low-complexity bypassing technique with adaptive routing, the proposed router is able to balance the traffic in the network to reduce the average packet latency under various traffic loads. Simulation shows that, the proposed router can reduce the average packet delay by an average of 45% in 3D NoCs

    Cost Effective Routing Implementations for On-chip Networks

    Full text link
    Arquitecturas de múltiples núcleos como multiprocesadores (CMP) y soluciones multiprocesador para sistemas dentro del chip (MPSoCs) actuales se basan en la eficacia de las redes dentro del chip (NoC) para la comunicación entre los diversos núcleos. Un diseño eficiente de red dentro del chip debe ser escalable y al mismo tiempo obtener valores ajustados de área, latencia y consumo de energía. Para diseños de red dentro del chip de propósito general se suele usar topologías de malla 2D ya que se ajustan a la distribución del chip. Sin embargo, la aparición de nuevos retos debe ser abordada por los diseñadores. Una mayor probabilidad de defectos de fabricación, la necesidad de un uso optimizado de los recursos para aumentar el paralelismo a nivel de aplicación o la necesidad de técnicas eficaces de ahorro de energía, puede ocasionar patrones de irregularidad en las topologías. Además, el soporte para comunicación colectiva es una característica buscada para abordar con eficacia las necesidades de comunicación de los protocolos de coherencia de caché. En estas condiciones, un encaminamiento eficiente de los mensajes se convierte en un reto a superar. El objetivo de esta tesis es establecer las bases de una nueva arquitectura para encaminamiento distribuido basado en lógica que es capaz de adaptarse a cualquier topología irregular derivada de una estructura de malla 2D, proporcionando así una cobertura total para cualquier caso resultado de soportar los retos mencionados anteriormente. Para conseguirlo, en primer lugar, se parte desde una base, para luego analizar una evolución de varios mecanismos, y finalmente llegar a una implementación, que abarca varios módulos para alcanzar el objetivo mencionado anteriormente. De hecho, esta última implementación tiene por nombre eLBDR (effective Logic-Based Distributed Routing). Este trabajo cubre desde el primer mecanismo, LBDR, hasta el resto de mecanismos que han surgido progresivamente.Rodrigo Mocholí, S. (2010). Cost Effective Routing Implementations for On-chip Networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8962Palanci

    High performance communication on reconfigurable clusters

    Get PDF
    High Performance Computing (HPC) has matured to where it is an essential third pillar, along with theory and experiment, in most domains of science and engineering. Communication latency is a key factor that is limiting the performance of HPC, but can be addressed by integrating communication into accelerators. This integration allows accelerators to communicate with each other without CPU interactions, and even bypassing the network stack. Field Programmable Gate Arrays (FPGAs) are the accelerators that currently best integrate communication with computation. The large number of Multi-gigabit Transceivers (MGTs) on most high-end FPGAs can provide high-bandwidth and low-latency inter-FPGA connections. Additionally, the reconfigurable FPGA fabric enables tight coupling between computation kernel and network interface. Our thesis is that an application-aware communication infrastructure for a multi-FPGA system makes substantial progress in solving the HPC communication bottleneck. This dissertation aims to provide an application-aware solution for communication infrastructure for FPGA-centric clusters. Specifically, our solution demonstrates application-awareness across multiple levels in the network stack, including low-level link protocols, router microarchitectures, routing algorithms, and applications. We start by investigating the low-level link protocol and the impact of its latency variance on performance. Our results demonstrate that, although some link jitter is always present, we can still assume near-synchronous communication on an FPGA-cluster. This provides the necessary condition for statically-scheduled routing. We then propose two novel router microarchitectures for two different kinds of workloads: a wormhole Virtual Channel (VC)-based router for workloads with dynamic communication, and a statically-scheduled Virtual Output Queueing (VOQ)-based router for workloads with static communication. For the first (VC-based) router, we propose a framework that generates application-aware router configurations. Our results show that, by adding application-awareness into router configuration, the network performance of FPGA clusters can be substantially improved. For the second (VOQ-based) router, we propose a novel offline collective routing algorithm. This shows a significant advantage over a state-of-the-art collective routing algorithm. We apply our communication infrastructure to a critical strong-scaling HPC kernel, the 3D FFT. The experimental results demonstrate that the performance of our design is faster than that on CPUs and GPUs by at least one order of magnitude (achieving strong scaling for the target applications). Surprisingly, the FPGA cluster performance is similar to that of an ASIC-cluster. We also implement the 3D FFT on another multi-FPGA platform: the Microsoft Catapult II cloud. Its performance is also comparable or superior to CPU and GPU HPC clusters. The second application we investigate is Molecular Dynamics Simulation (MD). We model MD on both FPGA clouds and clusters. We find that combining processing and general communication in the same device leads to extremely promising performance and the prospect of MD simulations well into the us/day range with a commodity cloud

    Extending the performance of hybrid NoCs beyond the limitations of network heterogeneity

    Get PDF
    To meet the performance and scalability demands of the fast-paced technological growth towards exascale and Big-Data processing with the performance bottleneck of conventional metal based interconnects (wireline), alternative interconnect fabrics such as inhomogeneous three-dimensional integrated Network-on-Chip (3D NoC) and hybrid wired-wireless Network-on-Chip (WiNoC) have emanated as a cost-effective solution for emerging System-on-Chip (SoC) design. However, these interconnects trade-off optimized performance for cost by restricting the number of area and power hungry 3D routers and wireless nodes. Moreover, the non-uniform distributed traffic in chip multiprocessor (CMP) demands an on-chip communication infrastructure which can avoid congestion under high traffic conditions while possessing minimal pipeline delay at low-load conditions. To this end, in this paper, we propose a low-latency adaptive router with a low-complexity single-cycle bypassing mechanism to alleviate the performance degradation due to the slow 2D routers in such emerging hybrid NoCs. The proposed router transmits a flit using dimension-ordered routing (DoR) in the bypass datapath at low-loads. When the output port required for intra-dimension bypassing is not available, the packet is routed adaptively to avoid congestion. The router also has a simplified virtual channel allocation (VA) scheme that yields a non-speculative low-latency pipeline. By combining the low-complexity bypassing technique with adaptive routing, the proposed router is able balance the traffic in hybrid NoCs to achieve low-latency communication under various traffic loads. Simulation shows that, the proposed router can reduce applications’ execution time by an average of 16.9% compared to low-latency routers such as SWIFT. By reducing the latency between 2D routers (or wired nodes) and 3D routers (or wireless nodes) the proposed router can improve performance efficiency in terms of average packet delay by an average of 45% (or 50%) in 3D NoCs (or WiNoCs)

    A resilient 2-D waveguide communication fabric for hybrid wired-wireless NoC design

    Get PDF
    Hybrid wired-wireless Network-on-Chip (WiNoC) has emerged as an alternative solution to the poor scalability and performance issues of conventional wireline NoC design for future System-on-Chip (SoC). Existing feasible wireless solution for WiNoCs in the form of millimeter wave (mm-Wave) relies on free space signal radiation which has high power dissipation with high degradation rate in the signal strength per transmission distance. Moreover, over the lossy wireless medium, combining wireless and wireline channels drastically reduces the total reliability of the communication fabric. Surface wave has been proposed as an alternative wireless technology for low power on-chip communication. With the right design considerations, the reliability and performance benefits of the surface wave channel could be extended. In this paper, we propose a surface wave communication fabric for emerging WiNoCs that is able to match the reliability of traditional wireline NoCs. First, we propose a realistic channel model which demonstrates that existing mm-Wave WiNoCs suffers from not only free-space spreading loss (FSSL) but also molecular absorption attenuation (MAA), especially at high frequency band, which reduces the reliability of the system. Consequently, we employ a carefully designed transducer and commercially available thin metal conductor coated with a low cost dielectric material to generate surface wave signals with improved transmission gain. Our experimental results demonstrate that the proposed communication fabric can achieve a 5dB operational bandwidth of about 60GHz around the center frequency (60GHz). By improving the transmission reliability of wireless layer, the proposed communication fabric can improve maximum sustainable load of NoCs by an average of 20.9% and 133.3% compared to existing WiNoCs and wireline NoCs, respectively

    Quarc: an architecture for efficient on-chip communication

    Get PDF
    The exponential downscaling of the feature size has enforced a paradigm shift from computation-based design to communication-based design in system on chip development. Buses, the traditional communication architecture in systems on chip, are incapable of addressing the increasing bandwidth requirements of future large systems. Networks on chip have emerged as an interconnection architecture offering unique solutions to the technological and design issues related to communication in future systems on chip. The transition from buses as a shared medium to networks on chip as a segmented medium has given rise to new challenges in system on chip realm. By leveraging the shared nature of the communication medium, buses have been highly efficient in delivering multicast communication. The segmented nature of networks, however, inhibits the multicast messages to be delivered as efficiently by networks on chip. Relying on extensive research on multicast communication in parallel computers, several network on chip architectures have offered mechanisms to perform the operation, while conforming to resource constraints of the network on chip paradigm. Multicast communication in majority of these networks on chip is implemented by establishing a connection between source and all multicast destinations before the message transmission commences. Establishing the connections incurs an overhead and, therefore, is not desirable; in particular in latency sensitive services such as cache coherence. To address high performance multicast communication, this research presents Quarc, a novel network on chip architecture. The Quarc architecture targets an area-efficient, low power, high performance implementation. The thesis covers a detailed representation of the building blocks of the architecture, including topology, router and network interface. The cost and performance comparison of the Quarc architecture against other network on chip architectures reveals that the Quarc architecture is a highly efficient architecture. Moreover, the thesis introduces novel performance models of complex traffic patterns, including multicast and quality of service-aware communication
    • …
    corecore