6,806 research outputs found

    Specification of multiparty audio and video interaction based on the Reference Model of Open Distributed Processing

    Get PDF
    The Reference Model of Open Distributed Processing (RM-ODP) is an emerging ISO/ITU-T standard. It provides a framework of abstractions based on viewpoints, and it defines five viewpoint languages to model open distributed systems. This paper uses the viewpoint languages to specify multiparty audio/video exchange in distributed systems. To the designers of distributed systems, it shows how the concepts and rules of RM-ODP can be applied.\ud \ud The ODP Âżbinding objectÂż is an important concept to model continuous data flows in distributed systems. We take this concept as a basis for multiparty audio and video flow exchanges, and we provide five ODP viewpoint specifications, each emphasising a particular concern. To ensure overall correctness, special attention is paid to the mapping between the ODP viewpoint specifications

    SCOR: Software-defined Constrained Optimal Routing Platform for SDN

    Full text link
    A Software-defined Constrained Optimal Routing (SCOR) platform is introduced as a Northbound interface in SDN architecture. It is based on constraint programming techniques and is implemented in MiniZinc modelling language. Using constraint programming techniques in this Northbound interface has created an efficient tool for implementing complex Quality of Service routing applications in a few lines of code. The code includes only the problem statement and the solution is found by a general solver program. A routing framework is introduced based on SDN's architecture model which uses SCOR as its Northbound interface and an upper layer of applications implemented in SCOR. Performance of a few implemented routing applications are evaluated in different network topologies, network sizes and various number of concurrent flows.Comment: 19 pages, 11 figures, 11 algorithms, 3 table

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    A recursive approach to network management

    Full text link
    Nowadays there is an increasing need for a general management paradigm which can simplify network management and further enable network innovations. In this paper, in response to limitations of current Software Defined Networking (SDN) management solutions, we propose a recursive approach to enterprise network management, where network management is done through managing various Virtual Transport Networks (VTNs). Different from the traditional virtual network model which mainly focuses on routing/tunneling, our VTN provides communication service with explicit Quality-of-Service (QoS) support for applications via transport flows, and it involves all mechanisms (e:g:, routing, addressing, error and flow control, resource allocation) needed to support such transport flows. Based on this approach, we design and implement a management layer, which recurses the same VTN-based management mechanism for enterprise network management. Comparing with an SDN-based management approach, our experimental results show that our management layer achieves better network performance

    Autonomic Cloud Computing: Open Challenges and Architectural Elements

    Full text link
    As Clouds are complex, large-scale, and heterogeneous distributed systems, management of their resources is a challenging task. They need automated and integrated intelligent strategies for provisioning of resources to offer services that are secure, reliable, and cost-efficient. Hence, effective management of services becomes fundamental in software platforms that constitute the fabric of computing Clouds. In this direction, this paper identifies open issues in autonomic resource provisioning and presents innovative management techniques for supporting SaaS applications hosted on Clouds. We present a conceptual architecture and early results evidencing the benefits of autonomic management of Clouds.Comment: 8 pages, 6 figures, conference keynote pape

    Analysis methodology for flow-level evaluation of a hybrid mobile-sensor network

    Get PDF
    Our society uses a large diversity of co-existing wired and wireless networks in order to satisfy its communication needs. A cooper- ation between these networks can benefit performance, service availabil- ity and deployment ease, and leads to the emergence of hybrid networks. This position paper focuses on a hybrid mobile-sensor network identify- ing potential advantages and challenges of its use and defining feasible applications. The main value of the paper, however, is in the proposed analysis approach to evaluate the performance at the mobile network side given the mixed mobile-sensor traffic. The approach combines packet- level analysis with modelling of flow-level behaviour and can be applied for the study of various application scenarios. In this paper we consider two applications with distinct traffic models namely multimedia traffic and best-effort traffic
    • 

    corecore