6,697 research outputs found

    A Framework for Rapid Development and Portable Execution of Packet-Handling Applications

    Get PDF
    This paper presents a framework that enables the execution of packet-handling applications (such as sniffers, firewalls, intrusion detectors, etc.) on different hardware platforms. This framework is centered on the NetVM - a novel, portable, and efficient virtual processor targeted for packet-based processing - and the NetPDL - a language dissociating applications from protocol specifications. In addition, a high-level programming language that enables rapid development of packet-based applications is presented

    Improving Attack Trees Analysis using Petri Net modeling of Cyber-Attacks

    Get PDF
    Publisher Copyright: © 2019 IEEE.Cyber security is one general concern to all network-based organizations. In recent years, by significant increasing cyber-attacks in critical infrastructures (CIs) the need of smart prediction, awareness and protection systems is not deniable. The first step for security assessment is on recognizing and analyzing attacks. In this paper, one of the graphical security assessments named Attack Tree (AT) is used to illustrate one kind of cyber-attacks scenario in Industry 4.0 and the system's behavior is analyzed by Petri Nets.authorsversionpublishe

    DAG-Based Attack and Defense Modeling: Don't Miss the Forest for the Attack Trees

    Full text link
    This paper presents the current state of the art on attack and defense modeling approaches that are based on directed acyclic graphs (DAGs). DAGs allow for a hierarchical decomposition of complex scenarios into simple, easily understandable and quantifiable actions. Methods based on threat trees and Bayesian networks are two well-known approaches to security modeling. However there exist more than 30 DAG-based methodologies, each having different features and goals. The objective of this survey is to present a complete overview of graphical attack and defense modeling techniques based on DAGs. This consists of summarizing the existing methodologies, comparing their features and proposing a taxonomy of the described formalisms. This article also supports the selection of an adequate modeling technique depending on user requirements

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view

    Evaluating Resilience of Cyber-Physical-Social Systems

    Get PDF
    Nowadays, protecting the network is not the only security concern. Still, in cyber security, websites and servers are becoming more popular as targets due to the ease with which they can be accessed when compared to communication networks. Another threat in cyber physical social systems with human interactions is that they can be attacked and manipulated not only by technical hacking through networks, but also by manipulating people and stealing users’ credentials. Therefore, systems should be evaluated beyond cy- ber security, which means measuring their resilience as a piece of evidence that a system works properly under cyber-attacks or incidents. In that way, cyber resilience is increas- ingly discussed and described as the capacity of a system to maintain state awareness for detecting cyber-attacks. All the tasks for making a system resilient should proactively maintain a safe level of operational normalcy through rapid system reconfiguration to detect attacks that would impact system performance. In this work, we broadly studied a new paradigm of cyber physical social systems and defined a uniform definition of it. To overcome the complexity of evaluating cyber resilience, especially in these inhomo- geneous systems, we proposed a framework including applying Attack Tree refinements and Hierarchical Timed Coloured Petri Nets to model intruder and defender behaviors and evaluate the impact of each action on the behavior and performance of the system.Hoje em dia, proteger a rede não é a única preocupação de segurança. Ainda assim, na segurança cibernética, sites e servidores estão se tornando mais populares como alvos devido à facilidade com que podem ser acessados quando comparados às redes de comu- nicação. Outra ameaça em sistemas sociais ciberfisicos com interações humanas é que eles podem ser atacados e manipulados não apenas por hackers técnicos através de redes, mas também pela manipulação de pessoas e roubo de credenciais de utilizadores. Portanto, os sistemas devem ser avaliados para além da segurança cibernética, o que significa medir sua resiliência como uma evidência de que um sistema funciona adequadamente sob ataques ou incidentes cibernéticos. Dessa forma, a resiliência cibernética é cada vez mais discutida e descrita como a capacidade de um sistema manter a consciência do estado para detectar ataques cibernéticos. Todas as tarefas para tornar um sistema resiliente devem manter proativamente um nível seguro de normalidade operacional por meio da reconfi- guração rápida do sistema para detectar ataques que afetariam o desempenho do sistema. Neste trabalho, um novo paradigma de sistemas sociais ciberfisicos é amplamente estu- dado e uma definição uniforme é proposta. Para superar a complexidade de avaliar a resiliência cibernética, especialmente nesses sistemas não homogéneos, é proposta uma estrutura que inclui a aplicação de refinamentos de Árvores de Ataque e Redes de Petri Coloridas Temporizadas Hierárquicas para modelar comportamentos de invasores e de- fensores e avaliar o impacto de cada ação no comportamento e desempenho do sistema

    De-perimeterisation as a cycle: tearing down and rebuilding security perimeters

    Get PDF
    If an organisation wants to secure its IT assets, where should the security mechanisms be placed? The traditional view is the hard-shell model, where an organisation secures all its assets using a fixed security border: What is inside the security perimeter is more or less trusted, what is outside is not. Due to changes in technologies, business processes and their legal environments this approach is not adequate anymore.\ud This paper examines this process, which was coined de-perimeterisation by the Jericho Forum.\ud In this paper we analyse and define the concepts of perimeter and de-perimeterisation, and show that there is a long term trend in which de-perimeterisation is iteratively accelerated and decelerated. In times of accelerated de-perimeterisation, technical and organisational changes take place by which connectivity between organisations and their environment scales up significantly. In times of deceleration, technical and organisational security measures are taken to decrease the security risks that come with de-perimeterisation, a movement that we call re-perimeterisation. We identify the technical and organisational mechanisms that facilitate de-perimeterisation and re-perimeterisation, and discuss the forces that cause organisations to alternate between these two movements
    corecore