160,036 research outputs found

    Generating collaborative systems for digital libraries: A model-driven approach

    Get PDF
    This is an open access article shared under a Creative Commons Attribution 3.0 Licence (http://creativecommons.org/licenses/by/3.0/). Copyright @ 2010 The Authors.The design and development of a digital library involves different stakeholders, such as: information architects, librarians, and domain experts, who need to agree on a common language to describe, discuss, and negotiate the services the library has to offer. To this end, high-level, language-neutral models have to be devised. Metamodeling techniques favor the definition of domainspecific visual languages through which stakeholders can share their views and directly manipulate representations of the domain entities. This paper describes CRADLE (Cooperative-Relational Approach to Digital Library Environments), a metamodel-based framework and visual language for the definition of notions and services related to the development of digital libraries. A collection of tools allows the automatic generation of several services, defined with the CRADLE visual language, and of the graphical user interfaces providing access to them for the final user. The effectiveness of the approach is illustrated by presenting digital libraries generated with CRADLE, while the CRADLE environment has been evaluated by using the cognitive dimensions framework

    Designing a novel virtual collaborative environment to support collaboration in design review meetings

    Get PDF
    Project review meetings are part of the project management process and are organised to assess progress and resolve any design conflicts to avoid delays in construction. One of the key challenges during a project review meeting is to bring the stakeholders together and use this time effectively to address design issues as quickly as possible. At present, current technology solutions based on BIM or CAD are information-centric and do not allow project teams to collectively explore the design from a range of perspectives and brainstorm ideas when design conflicts are encountered. This paper presents a system architecture that can be used to support multi-functional team collaboration more effectively during such design review meetings. The proposed architecture illustrates how information-centric BIM or CAD systems can be made human- and team-centric to enhance team communication and problem solving. An implementation of the proposed system architecture has been tested for its utility, likability and usefulness during design review meetings. The evaluation results suggest that the collaboration platform has the potential to enhance collaboration among multi-functional teams

    Surveying human habit modeling and mining techniques in smart spaces

    Get PDF
    A smart space is an environment, mainly equipped with Internet-of-Things (IoT) technologies, able to provide services to humans, helping them to perform daily tasks by monitoring the space and autonomously executing actions, giving suggestions and sending alarms. Approaches suggested in the literature may differ in terms of required facilities, possible applications, amount of human intervention required, ability to support multiple users at the same time adapting to changing needs. In this paper, we propose a Systematic Literature Review (SLR) that classifies most influential approaches in the area of smart spaces according to a set of dimensions identified by answering a set of research questions. These dimensions allow to choose a specific method or approach according to available sensors, amount of labeled data, need for visual analysis, requirements in terms of enactment and decision-making on the environment. Additionally, the paper identifies a set of challenges to be addressed by future research in the field

    SAT based Enforcement of Domotic Effects in Smart Environments

    Get PDF
    The emergence of economically viable and efficient sensor technology provided impetus to the development of smart devices (or appliances). Modern smart environments are equipped with a multitude of smart devices and sensors, aimed at delivering intelligent services to the users of smart environments. The presence of these diverse smart devices has raised a major problem of managing environments. A rising solution to the problem is the modeling of user goals and intentions, and then interacting with the environments using user defined goals. `Domotic Effects' is a user goal modeling framework, which provides Ambient Intelligence (AmI) designers and integrators with an abstract layer that enables the definition of generic goals in a smart environment, in a declarative way, which can be used to design and develop intelligent applications. The high-level nature of domotic effects also allows the residents to program their personal space as they see fit: they can define different achievement criteria for a particular generic goal, e.g., by defining a combination of devices having some particular states, by using domain-specific custom operators. This paper describes an approach for the automatic enforcement of domotic effects in case of the Boolean application domain, suitable for intelligent monitoring and control in domotic environments. Effect enforcement is the ability to determine device configurations that can achieve a set of generic goals (domotic effects). The paper also presents an architecture to implement the enforcement of Boolean domotic effects, and results obtained from carried out experiments prove the feasibility of the proposed approach and highlight the responsiveness of the implemented effect enforcement architectur

    Language design for a personal learning environment design language

    Get PDF
    Approaching technology-enhanced learning from the perspective of a learner, we foster the idea of learning environment design, learner interactions, and tool interoperability. In this paper, we shortly summarize the motivation for our personal learning environment approach and describe the development of a domain-specific language for this purpose as well as its realization in practice. Consequently, we examine our learning environment design language according to its lexis and syntax, the semantics behind it, and pragmatical aspects within a first prototypic implementation. Finally, we discuss strengths, problematic aspects, and open issues of our approach

    Entry and access : how shareability comes about

    Get PDF
    Shareability is a design principle that refers to how a system, interface, or device engages a group of collocated, co-present users in shared interactions around the same content (or the same object). This is broken down in terms of a set of components that facilitate or constrain the way an interface (or product) is made shareable. Central are the notions of access points and entry points. Entry points invite and entice people into engagement, providing an advance overview, minimal barriers, and a honeypot effect that draws observers into the activity. Access points enable users to join a group's activity, allowing perceptual and manipulative access and fluidity of sharing. We show how these terms can be useful for informing analysis and empirical research

    An illustrated framework for the analysis of Web2.0 interactivity

    Get PDF
    corecore