190,800 research outputs found

    Ground Rules in Team Projects: Findings from a Prototype System to Support Students

    Get PDF
    Student team project work in higher education is one of the best ways to develop team working skills at the same time as learning about the subject matter. As today’s students require the freedom to learn at times and places that better match their lifestyles, there is a need for any support for team project work to be also available online. Team working requires that the task roles as well as the maintenance roles are taken into consideration, in that social interactions are just as important as carrying out the tasks of the project. The literature indicates that groupware, whilst effective in supporting the task roles, provides limited support for the maintenance roles of team working in the work place. As groupware was not specifically designed for student team working, it provides limited support for maintenance roles in student team projects. Virtual learning environments similarly provide support for completing the task roles. Many researchers have found that students experience difficulties with their team project work that reduce the perceived benefits of working in a team. It is proposed that helping students to agree on ground rules at the start of a project will improve team cohesion. This paper describes the implementation and evaluation of a prototype system to help students to agree on ground rules as they start their team projects. The system was tested with teams of students carrying out information systems team projects, using an interpretive case study research approach. In this case the teams had the additional problem of being composed of students from across three years of their undergraduate degree programmes, so they did not always have prior knowledge of each other’s preferences. We were trying to establish how useful this software tool would be to these student teams, in starting their project work. The findings showed that some of the student teams did find the ground rules function useful, but the team leaders were the ones who most appreciated its potential. The students may use the outputs in very different ways, but even just looking at the ground rules appeared to get team members thinking about their expectations for team working. Student teams do not often start by thinking about norms, but this study shows a positive benefit of encouraging teams to agree on ground rules at the start of their projects

    Critical success factors for e-tendering implementation in construction collaborative environments : people and process issues

    Get PDF
    The construction industry is increasingly engulfed by globalisation where clients, business partners and customers are found in virtually every corner of the world. Communicating, reaching and supporting them are no longer optional but are imperative for continued business growth and success. A key component of enterprise communication reach is collaborative environments (for the construction industry) which allows customers, suppliers, partners and other project team members secure access to project information, products or services they need at any given moment. Implementation of the stated critical success factors of the project is essential to ensure optimal performance and benefits from the system to all parties involved. This paper presents critical success factors for the implementation of e-tendering in collaborative environments with particular considerations given to the people issues and process factors

    Designing a novel virtual collaborative environment to support collaboration in design review meetings

    Get PDF
    Project review meetings are part of the project management process and are organised to assess progress and resolve any design conflicts to avoid delays in construction. One of the key challenges during a project review meeting is to bring the stakeholders together and use this time effectively to address design issues as quickly as possible. At present, current technology solutions based on BIM or CAD are information-centric and do not allow project teams to collectively explore the design from a range of perspectives and brainstorm ideas when design conflicts are encountered. This paper presents a system architecture that can be used to support multi-functional team collaboration more effectively during such design review meetings. The proposed architecture illustrates how information-centric BIM or CAD systems can be made human- and team-centric to enhance team communication and problem solving. An implementation of the proposed system architecture has been tested for its utility, likability and usefulness during design review meetings. The evaluation results suggest that the collaboration platform has the potential to enhance collaboration among multi-functional teams

    The seamless integration of Web3D technologies with university curricula to engage the changing student cohort

    Get PDF
    The increasing tendency of many university students to study at least some courses at a distance limits their opportunities for the interactions fundamental to learning. Online learning can assist but relies heavily on text, which is limiting for some students. The popularity of computer games, especially among the younger students, and the emergence of networked games and game-like virtual worlds offers opportunities for enhanced interaction in educational applications. For virtual worlds to be widely adopted in higher education it is desirable to have approaches to design and development that are responsive to needs and limited in their resource requirements. Ideally it should be possible for academics without technical expertise to adapt virtual worlds to support their teaching needs. This project identified Web3D, a technology that is based on the X3D standards and which presents 3D virtual worlds within common web browsers, as an approach worth exploring for educational application. The broad goals of the project were to produce exemplars of Web3D for educational use, together with development tools and associated resources to support non-technical academic adopters, and to promote an Australian community of practice to support broader adoption of Web3D in education. During the first year of the project exemplar applications were developed and tested. The Web3D technology was found to be still in a relatively early stage of development in which the application of standards did not ensure reliable operation in different environments. Moreover, ab initio development of virtual worlds and associated tools proved to be more demanding of resources than anticipated and was judged unlikely in the near future to result in systems that non-technical academics could use with confidence. In the second year the emphasis moved to assisting academics to plan and implement teaching in existing virtual worlds that provided relatively easy to use tools for customizing an environment. A project officer worked with participating academics to support the teaching of significant elements of courses within Second LifeTM. This approach was more successful in producing examples of good practice that could be shared with and emulated by other academics. Trials were also conducted with ExitRealityTM, a new Australian technology that presents virtual worlds in a web browser. Critical factors in the success of the project included providing secure access to networked computers with the necessary capability; negotiating the complexity of working across education, design of virtual worlds, and technical requirements; and supporting participants with professional development in the technology and appropriate pedagogy for the new environments. Major challenges encountered included working with experimental technologies that are evolving rapidly and deploying new networked applications on secure university networks. The project has prepared the way for future expansion in the use of virtual worlds for teaching at USQ and has contributed to the emergence of a national network of tertiary educators interested in the educational applications of virtual worlds

    An agent system to support student teams working online

    Get PDF
    Online learning is now a reality, with distributed learning and blended learning becoming more widely used in Higher Education. Novel ways in which undergraduate and postgraduate learning material can be presented are being developed, and methods for helping students to learn online are needed, especially if we require them to collaborate with each other on learning activities. Agents to provide a supporting role for students have evolved from Artificial Intelligence research, and their strength lies in their ease of operation over networks as well as their ability to act in response to stimuli. In this paper an application of a software agent is described, aimed at supporting students working on team projects in the online learning environment. Online teamwork is problematical for a number of reasons, such as getting acquainted with team members, finding out about other team members’ abilities, agreeing who should do which tasks, communications between team members and keeping up to date with progress that has been made on the project. Software agents have the ability to monitor progress and to offer advice by operating in the background, acting autonomously when the need arises. An agent prototype has been developed in Prolog to perform a limited set of functions to support students. Team projects have a planning, doing and completing stage, all of which require them to have some sort of agent support. This agent at present supports part of the planning stage, by prompting the students to input their likes, dislikes and abilities for a selection of task areas defined for the project. The agent then allocates the various tasks to the students according to predetermined rules. The results of a trial carried out using teams working on projects, on campus, indicate that students like the idea of using this agent to help with allocating tasks. They also agreed that agent support of this type would probably be helpful to both students working on team projects with face to face contact, as well as for teams working solely online. Work is ongoing to add more functionality to the agent and to evaluate the agent more widely

    ALT-C 2010 - Conference Proceedings

    Get PDF

    A requirements engineering framework for integrated systems development for the construction industry

    Get PDF
    Computer Integrated Construction (CIC) systems are computer environments through which collaborative working can be undertaken. Although many CIC systems have been developed to demonstrate the communication and collaboration within the construction projects, the uptake of CICs by the industry is still inadequate. This is mainly due to the fact that research methodologies of the CIC development projects are incomplete to bridge the technology transfer gap. Therefore, defining comprehensive methodologies for the development of these systems and their effective implementation on real construction projects is vital. Requirements Engineering (RE) can contribute to the effective uptake of these systems because it drives the systems development for the targeted audience. This paper proposes a requirements engineering approach for industry driven CIC systems development. While some CIC systems are investigated to build a broad and deep contextual knowledge in the area, the EU funded research project, DIVERCITY (Distributed Virtual Workspace for Enhancing Communication within the Construction Industry), is analysed as the main case study project because its requirements engineering approach has the potential to determine a framework for the adaptation of requirements engineering in order to contribute towards the uptake of CIC systems

    The Blended Learning Unit, University of Hertfordshire: A Centre for Excellence in Teaching and Learning, Evaluation Report for HEFCE

    Get PDF
    The University of Hertfordshire’s Blended Learning Unit (BLU) was one of the 74 Centres for Excellence in Teaching and Learning (CETLs) funded by the Higher Education Funding Council for England (HEFCE) between 2005 and 2010. This evaluation report follows HEFCE’s template. The first section provides statistical information about the BLU’s activity. The second section is an evaluative reflection responding to 13 questions. As well as articulating some of our achievements and the challenges we have faced, it also sets out how the BLU’s activity will continue and make a significant contribution to delivery of the University of Hertfordshire’s 2010-2015 strategic plan and its aspirations for a more sustainable future. At the University of Hertfordshire, we view Blended Learning as the use of Information and Communication Technology (ICT) to enhance the learning and learning experience of campus-based students. The University has an excellent learning technology infrastructure that includes its VLE, StudyNet. StudyNet gives students access to a range of tools, resources and support 24/7 from anywhere in the world and its robustness, flexibility and ease of use have been fundamental to the success of the Blended Learning agenda at Hertfordshire. The BLU has comprised a management team, expert teachers seconded from around the University, professional support and a Student Consultant. The secondment staffing model was essential to the success of the BLU. As well as enabling the BLU to become fully staffed within the first five months of the CETL initiative, it has facilitated access to an invaluable spectrum of Blended Learning, research and Change Management expertise to inform pedagogically sound developments and enable change to be embedded across the institution. The BLU used much of its capital funding to reduce barriers to the use of technology by, for example, providing laptop computers for all academic staff in the institution, enhancing classroom technology provision and wirelessly enabling all teaching accommodation. Its recurrent funding has supported development opportunities for its own staff and staff around the institution; supported evaluation activities relating to individual projects and of the BLU’s own impact; and supported a wide range of communication and dissemination activities internally and externally. The BLU has led the embedding a cultural change in relation to Blended Learning at the University of Hertfordshire and its impact will be sustained. The BLU has produced a rich legacy of resources for our own staff and for others in the sector. The University’s increased capacity in Blended Learning benefits all our students and provides a learning experience that is expected by the new generation of learners in the 21st century. The BLU’s staffing model and partnership ways of working have directly informed the structure and modus operandi of the University’s Learning and Teaching Institute (LTI). Indeed a BLU team will continue to operate within the LTI and help drive and support the implementation of the University’s 2010-2015 Strategic plan. The plan includes ambitions in relation to Distance Learning and Flexible learning and BLU will be working to enable greater engagement with students with less or no need to travel to the university. As well as opening new markets within the UK and overseas, even greater flexibility for students will also enable the University to reduce its carbon footprint and provide a multifaceted contribution to our sustainability agenda. We conclude this executive summary with a short paragraph, written by Eeva Leinonen, our former Deputy Vice-Chancellor, which reflects our aspiration to transform Learning and Teaching at the University of Hertfordshire and more widely in the sector. ‘As Deputy Vice Chancellor at Hertfordshire I had the privilege to experience closely the excellent work of the Blended Learning Unit, and was very proud of the enormous impact the CETL had not only across the University but also nationally and internationally. However, perhaps true impact is hard to judge at such close range, but now as Vice Principal (Education) at King's College London, I can unequivocally say that Hertfordshire is indeed considered as the leading Blended Learning university in the sector. My new colleagues at King's and other Russell Group Universities frequently seek my views on the 'Hertfordshire Blended Learning' experience and are keen to emulate the successes achieved at an institutional wide scale. The Hertfordshire CETL undoubtedly achieved not only what it set out to achieve, but much more in terms of scale and impact. All those involved in this success can be justifiably proud of their achievements.’ Professor Eeva Leinonen, Vice Principal (Education), King's College, Londo
    corecore