16 research outputs found

    Query-driven learning for predictive analytics of data subspace cardinality

    Get PDF
    Fundamental to many predictive analytics tasks is the ability to estimate the cardinality (number of data items) of multi-dimensional data subspaces, defined by query selections over datasets. This is crucial for data analysts dealing with, e.g., interactive data subspace explorations, data subspace visualizations, and in query processing optimization. However, in many modern data systems, predictive analytics may be (i) too costly money-wise, e.g., in clouds, (ii) unreliable, e.g., in modern Big Data query engines, where accurate statistics are difficult to obtain/maintain, or (iii) infeasible, e.g., for privacy issues. We contribute a novel, query-driven, function estimation model of analyst-defined data subspace cardinality. The proposed estimation model is highly accurate in terms of prediction and accommodating the well-known selection queries: multi-dimensional range and distance-nearest neighbors (radius) queries. Our function estimation model: (i) quantizes the vectorial query space, by learning the analysts’ access patterns over a data space, (ii) associates query vectors with their corresponding cardinalities of the analyst-defined data subspaces, (iii) abstracts and employs query vectorial similarity to predict the cardinality of an unseen/unexplored data subspace, and (iv) identifies and adapts to possible changes of the query subspaces based on the theory of optimal stopping. The proposed model is decentralized, facilitating the scaling-out of such predictive analytics queries. The research significance of the model lies in that (i) it is an attractive solution when data-driven statistical techniques are undesirable or infeasible, (ii) it offers a scale-out, decentralized training solution, (iii) it is applicable to different selection query types, and (iv) it offers a performance that is superior to that of data-driven approaches

    ST-Hadoop: A MapReduce Framework for Big Spatio-temporal Data Management

    Get PDF
    University of Minnesota Ph.D. dissertation.May 2019. Major: Computer Science. Advisor: Mohamed Mokbel. 1 computer file (PDF); x, 123 pages.Apache Hadoop, employing the MapReduce programming paradigm, that has been widely accepted as the standard framework for analyzing big data in distributed environments. Unfortunately, this rich framework was not genuinely exploited towards processing large scale spatio-temporal data, especially with the emergence and popularity of applications that create them in large-scale. The huge volumes of spatio-temporal data come from applications, like Taxi fleet in urban computing, Asteroids in astronomy research studies, animal movements in habitat studies, neuron analysis in neuroscience research studies, and contents of social networks (e.g., Twitter or Facebook). Managing space and time are two fundamental characteristics that raised the demand for processing spatio-temporal data created by these applications. Besides the massive size of data, the complexity of shapes and formats associated with these data raised many challenges in managing spatio-temporal data. The goal of the dissertation is centered on establishing a full-fledged big spatio-temporal data management system that serves the need for a wide range of spatio-temporal applications. This involves indexing, querying, and analyzing spatio-temporal data. We propose ST-Hadoop; the first full-fledged open-source system with native support for big spatio-temporal data, available to download http://st-hadoop.cs.umn.edu/. ST- Hadoop injects spatio-temporal data awareness inside the highly popular Hadoop system that is considered state-of-the-art for off-line analysis of big data systems. Considering a distributed environment, we focus on the following: (1) indexing spatio-temporal data and (2) Supporting various fundamental spatio-temporal operations, such as range, kNN, and join (3) Supporting indexing and querying trajectories, which is considered as a special class of spatio-temporal data that require special handling. Throughout this dissertation, we will touch base on the background and related work, motivate for the proposed system, and highlight our contributions

    Scalable and Declarative Information Extraction in a Parallel Data Analytics System

    Get PDF
    Informationsextraktions (IE) auf sehr großen Datenmengen erfordert hochkomplexe, skalierbare und anpassungsfähige Systeme. Obwohl zahlreiche IE-Algorithmen existieren, ist die nahtlose und erweiterbare Kombination dieser Werkzeuge in einem skalierbaren System immer noch eine große Herausforderung. In dieser Arbeit wird ein anfragebasiertes IE-System für eine parallelen Datenanalyseplattform vorgestellt, das für konkrete Anwendungsdomänen konfigurierbar ist und für Textsammlungen im Terabyte-Bereich skaliert. Zunächst werden konfigurierbare Operatoren für grundlegende IE- und Web-Analytics-Aufgaben definiert, mit denen komplexe IE-Aufgaben in Form von deklarativen Anfragen ausgedrückt werden können. Alle Operatoren werden hinsichtlich ihrer Eigenschaften charakterisiert um das Potenzial und die Bedeutung der Optimierung nicht-relationaler, benutzerdefinierter Operatoren (UDFs) für Data Flows hervorzuheben. Anschließend wird der Stand der Technik in der Optimierung nicht-relationaler Data Flows untersucht und herausgearbeitet, dass eine umfassende Optimierung von UDFs immer noch eine Herausforderung ist. Darauf aufbauend wird ein erweiterbarer, logischer Optimierer (SOFA) vorgestellt, der die Semantik von UDFs mit in die Optimierung mit einbezieht. SOFA analysiert eine kompakte Menge von Operator-Eigenschaften und kombiniert eine automatisierte Analyse mit manuellen UDF-Annotationen, um die umfassende Optimierung von Data Flows zu ermöglichen. SOFA ist in der Lage, beliebige Data Flows aus unterschiedlichen Anwendungsbereichen logisch zu optimieren, was zu erheblichen Laufzeitverbesserungen im Vergleich mit anderen Techniken führt. Als Viertes wird die Anwendbarkeit des vorgestellten Systems auf Korpora im Terabyte-Bereich untersucht und systematisch die Skalierbarkeit und Robustheit der eingesetzten Methoden und Werkzeuge beurteilt um schließlich die kritischsten Herausforderungen beim Aufbau eines IE-Systems für sehr große Datenmenge zu charakterisieren.Information extraction (IE) on very large data sets requires highly complex, scalable, and adaptive systems. Although numerous IE algorithms exist, their seamless and extensible combination in a scalable system still is a major challenge. This work presents a query-based IE system for a parallel data analysis platform, which is configurable for specific application domains and scales for terabyte-sized text collections. First, configurable operators are defined for basic IE and Web Analytics tasks, which can be used to express complex IE tasks in the form of declarative queries. All operators are characterized in terms of their properties to highlight the potential and importance of optimizing non-relational, user-defined operators (UDFs) for dataflows. Subsequently, we survey the state of the art in optimizing non-relational dataflows and highlight that a comprehensive optimization of UDFs is still a challenge. Based on this observation, an extensible, logical optimizer (SOFA) is introduced, which incorporates the semantics of UDFs into the optimization process. SOFA analyzes a compact set of operator properties and combines automated analysis with manual UDF annotations to enable a comprehensive optimization of data flows. SOFA is able to logically optimize arbitrary data flows from different application areas, resulting in significant runtime improvements compared to other techniques. Finally, the applicability of the presented system to terabyte-sized corpora is investigated. Hereby, we systematically evaluate scalability and robustness of the employed methods and tools in order to pinpoint the most critical challenges in building an IE system for very large data sets

    Big data analytics for large-scale wireless networks: Challenges and opportunities

    Full text link
    © 2019 Association for Computing Machinery. The wide proliferation of various wireless communication systems and wireless devices has led to the arrival of big data era in large-scale wireless networks. Big data of large-scale wireless networks has the key features of wide variety, high volume, real-time velocity, and huge value leading to the unique research challenges that are different from existing computing systems. In this article, we present a survey of the state-of-art big data analytics (BDA) approaches for large-scale wireless networks. In particular, we categorize the life cycle of BDA into four consecutive stages: Data Acquisition, Data Preprocessing, Data Storage, and Data Analytics. We then present a detailed survey of the technical solutions to the challenges in BDA for large-scale wireless networks according to each stage in the life cycle of BDA. Moreover, we discuss the open research issues and outline the future directions in this promising area

    Using Deep Learning for Big Spatial Data Partitioning

    Get PDF
    This article explores the use of deep learning to choose an appropriate spatial partitioning technique for big data. The exponential increase in the volumes of spatial datasets resulted in the development of big spatial data frameworks. These systems need to partition the data across machines to be able to scale out the computation. Unfortunately, there is no current method to automatically choose an appropriate partitioning technique based on the input data distribution. This article addresses this problem by using deep learning to train a model that captures the relationship between the data distribution and the quality of the partitioning techniques.We propose a solution that runs in two phases, training and application. The offline training phase generates synthetic data based on diverse distributions, partitions them using six different partitioning techniques, and measures their quality using four quality metrics. At the same time, it summarizes the datasets using a histogram and well-designed skewness measures. The data summaries and the quality metrics are then use to train a deep learning model. The second phase uses this model to predict the best partitioning technique given a new dataset that needs to be partitioned.We run an extensive experimental evaluation on big spatial data, andwe experimentally showthe applicability of the proposed technique.We showthat the proposed model outperforms the baseline method in terms of accuracy for choosing the best partitioning technique by only analyzing the summary of the datasets
    corecore