159 research outputs found

    Model Based Mission Assurance: NASA's Assurance Future

    Get PDF
    Model Based Systems Engineering (MBSE) is seeing increased application in planning and design of NASAs missions. This suggests the question: what will be the corresponding practice of Model Based Mission Assurance (MBMA)? Contemporaneously, NASAs Office of Safety and Mission Assurance (OSMA) is evaluating a new objectives based approach to standards to ensure that the Safety and Mission Assurance disciplines and programs are addressing the challenges of NASAs changing missions, acquisition and engineering practices, and technology. MBSE is a prominent example of a changing engineering practice. We use NASAs objectives-based strategy for Reliability and Maintainability as a means to examine how MBSE will affect assurance. We surveyed MBSE literature to look specifically for these affects, and find a variety of them discussed (some are anticipated, some are reported from applications to date). Predominantly these apply to the early stages of design, although there are also extrapolations of how MBSE practices will have benefits for testing phases. As the effort to develop MBMA continues, it will need to clearly and unambiguously establish the roles of uncertainty and risk in the system model. This will enable a variety of uncertainty-based analyses to be performed much more rapidly than ever before and has the promise to increase the integration of CRM (Continuous Risk Management) and PRA (Probabilistic Risk Analyses) even more fully into the project development life cycle. Various views and viewpoints will be required for assurance disciplines, and an over-arching viewpoint will then be able to more completely characterize the state of the project/program as well as (possibly) enabling the safety case approach for overall risk awareness and communication

    Model Based Mission Assurance in a Model Based Systems Engineering (MBSE) Framework: State-of-the-Art Assessment

    Get PDF
    This report explores the current state of the art of Safety and Mission Assurance (S&MA) in projects that have shifted towards Model Based Systems Engineering (MBSE). Its goal is to provide insight into how NASA's Office of Safety and Mission Assurance (OSMA) should respond to this shift. In MBSE, systems engineering information is organized and represented in models: rigorous computer-based representations, which collectively make many activities easier to perform, less error prone, and scalable. S&MA practices must shift accordingly. The "Objective Structure Hierarchies" recently developed by OSMA provide the framework for understanding this shift. Although the objectives themselves will remain constant, S&MA practices (activities, processes, tools) to achieve them are subject to change. This report presents insights derived from literature studies and interviews. The literature studies gleaned assurance implications from reports of space-related applications of MBSE. The interviews with knowledgeable S&MA and MBSE personnel discovered concerns and ideas for how assurance may adapt. Preliminary findings and observations are presented on the state of practice of S&MA with respect to MBSE, how it is already changing, and how it is likely to change further. Finally, recommendations are provided on how to foster the evolution of S&MA to best fit with MBSE

    Certifications of Critical Systems – The CECRIS Experience

    Get PDF
    In recent years, a considerable amount of effort has been devoted, both in industry and academia, to the development, validation and verification of critical systems, i.e. those systems whose malfunctions or failures reach a critical level both in terms of risks to human life as well as having a large economic impact. Certifications of Critical Systems – The CECRIS Experience documents the main insights on Cost Effective Verification and Validation processes that were gained during work in the European Research Project CECRIS (Certification of Critical Systems). The objective of the research was to tackle the challenges of certification by focusing on those aspects that turn out to be more difficult/important for current and future critical systems industry: the effective use of methodologies, processes and tools. Starting from both the scientific and industrial state of the art methodologies for system development and the impact of their usage on the verification and validation and certification of critical systems, the project aimed at developing strategies and techniques supported by automatic or semi-automatic tools and methods for these activities, setting guidelines to support engineers during the planning of the verification and validation phases. Topics covered include: Safety Assessment, Reliability Analysis, Critical Systems and Applications, Functional Safety, Dependability Validation, Dependable Software Systems, Embedded Systems, System Certification

    Certifications of Critical Systems – The CECRIS Experience

    Get PDF
    In recent years, a considerable amount of effort has been devoted, both in industry and academia, to the development, validation and verification of critical systems, i.e. those systems whose malfunctions or failures reach a critical level both in terms of risks to human life as well as having a large economic impact.Certifications of Critical Systems – The CECRIS Experience documents the main insights on Cost Effective Verification and Validation processes that were gained during work in the European Research Project CECRIS (acronym for Certification of Critical Systems). The objective of the research was to tackle the challenges of certification by focusing on those aspects that turn out to be more difficult/important for current and future critical systems industry: the effective use of methodologies, processes and tools.The CECRIS project took a step forward in the growing field of development, verification and validation and certification of critical systems. It focused on the more difficult/important aspects of critical system development, verification and validation and certification process. Starting from both the scientific and industrial state of the art methodologies for system development and the impact of their usage on the verification and validation and certification of critical systems, the project aimed at developing strategies and techniques supported by automatic or semi-automatic tools and methods for these activities, setting guidelines to support engineers during the planning of the verification and validation phases

    Certifications of Critical Systems – The CECRIS Experience

    Get PDF
    In recent years, a considerable amount of effort has been devoted, both in industry and academia, to the development, validation and verification of critical systems, i.e. those systems whose malfunctions or failures reach a critical level both in terms of risks to human life as well as having a large economic impact.Certifications of Critical Systems – The CECRIS Experience documents the main insights on Cost Effective Verification and Validation processes that were gained during work in the European Research Project CECRIS (acronym for Certification of Critical Systems). The objective of the research was to tackle the challenges of certification by focusing on those aspects that turn out to be more difficult/important for current and future critical systems industry: the effective use of methodologies, processes and tools.The CECRIS project took a step forward in the growing field of development, verification and validation and certification of critical systems. It focused on the more difficult/important aspects of critical system development, verification and validation and certification process. Starting from both the scientific and industrial state of the art methodologies for system development and the impact of their usage on the verification and validation and certification of critical systems, the project aimed at developing strategies and techniques supported by automatic or semi-automatic tools and methods for these activities, setting guidelines to support engineers during the planning of the verification and validation phases

    A Statistical Evaluation of Risk Priority Numbers in Failure Modes and Effects Analysis Applied to the Prediction of Complex Systems

    Get PDF
    Complex systems such as military aircraft and naval ships are difficult to cost effectively maintain. Frequently, large-scale maintenance of complex systems (i.e., a naval vessel) is based on the reduction of the system to its base subcomponents and the use of manufacturer-suggested, time-directed, preventative maintenance, which is augmented during the systems lifecycle with predictive maintenance which assesses the system\u27s ability to perform its mission objectives. While preventative maintenance under certain conditions can increase reliability, preventative maintenance systems are often costly, increase down time, and allow for maintenance-induced failures, which may decrease the reliability of the system (Ebeling, 1997). This maintenance scheme ignores the complexity of the system it tries to maintain. By combining the base components or subsystems into a larger system, and introducing human interaction with the system, the complexity of the system creates a unique entity that cannot be completely understood by basing predictability of the system to perform tasks on the reduction of the system to its subcomponents. This study adds to the scholarly literature by developing a model, based on the traditional failure modes and effects analysis commonly used for research and development projects, to capture the effects of the human interaction with the system. Based on the ability of personnel assigned to operate and maintain the system, the severity of the system failure on the impact on the metasystems ability to perform its mission and the likelihood of the event of the failure to occur. Findings of the research indicate that the human interaction with the system, in as far as the ability of the personnel to repair and maintain the system, is a vital component in the ability to predict likelihood of the system failure and the prioritization of the risk of system failure, may be adequately captured for analysis through use of expert opinion elicitation. The use of the expert\u27s opinions may provide additional robustness to the modeling and analysis of system behavior in the event that failure occurs

    Knowledge Reuse Through Electronic Knowledge Repositories: An Empirical Study And Ontological Improvement Effort For The Manufacturing Industry

    Get PDF
    Knowledge management adoption is growing, and will continue to grow in no small part because of its recent inclusion into the ISO 9001 quality standard. As organizations look towards ways in which to manage their knowledge, the codification of explicit knowledge through Knowledge Management Systems (KMS) and Electronic Knowledge Repositories (EKRs) will undoubtedly gain more interest. An EKR is a form of KMS that emphasizes the codification and storage of organizational expertise for the purposes of Knowledge Reuse (KRU). Unfortunately, the factors surrounding KRU are not well understood. While previous studies have viewed EKR usage from a narrow perspective, a broader and interconnected view of KRU via EKRs has yet to emerge. Additionally, while there have been numerous benefits linked to EKRs, there are still issues that limit their utility, particularly in the manufacturing arena where information complexity and geography have made it increasingly difficult to share knowledge. Hence, this research employed a two pronged approach. First, using a multi-theoretical perspective to model KRU via EKRs, a quantitative study was conducted and identified several socio-technical factors that predicted greater KRU. These factors had not been previously modeled within the context of KRU via EKRs, and hence add to both the theoretical and practical implications of the domain. Additionally, the KRU construct was also tied to a back end resulting outcome view that was informed by the Expectation Confirmation Model (ECM). Through this view, the research quantitatively validated that KRU not only predicted greater performance, but also impacted greater knowledge sharing and continuance of use. This ancillary benefit helps to reinforce the importance of EKRs in that additional gains are manifested along with the core component of KRU. Second, the research extended the capability of manufacturing EKRs by developing a holistic design and process based ontology that connects key concepts within these domains to provide an overall interconnected view. Additionally, to ensure the relevance of the ontology, a mature and globally recognized industry standard was used as the basis to develop it. The ontology was then formalized and tested via Semantic Web tools: Protege, RDF, and SPARQL. The results demonstrate an improved approach to knowledge recall by providing rich and accurate query returns. The ability to use standalone and federated queries to effectively cull the complexity of this interconnected domain is an enhancement to keyword based and traditional relational database approaches. Additionally, to assist with greater industry adoption a systematic and constructive approach for developing and operationalizing the ontology is provided. Finally, in the spirit of the program in which this dissertation is presented, rounding out the research effort are broader organizational management recommendations for overall knowledge management. Referencing industry targeted literature and syncing them with findings from these two research efforts, several pragmatic and sequentially logical approaches to knowledge management are offered
    • …
    corecore