6,124 research outputs found

    Continuous Nearest Neighbor Queries over Sliding Windows

    Get PDF
    Abstract—This paper studies continuous monitoring of nearest neighbor (NN) queries over sliding window streams. According to this model, data points continuously stream in the system, and they are considered valid only while they belong to a sliding window that contains 1) the W most recent arrivals (count-based) or 2) the arrivals within a fixed interval W covering the most recent time stamps (time-based). The task of the query processor is to constantly maintain the result of long-running NN queries among the valid data. We present two processing techniques that apply to both count-based and time-based windows. The first one adapts conceptual partitioning, the best existing method for continuous NN monitoring over update streams, to the sliding window model. The second technique reduces the problem to skyline maintenance in the distance-time space and precomputes the future changes in the NN set. We analyze the performance of both algorithms and extend them to variations of NN search. Finally, we compare their efficiency through a comprehensive experimental evaluation. The skyline-based algorithm achieves lower CPU cost, at the expense of slightly larger space overhead. Index Terms—Location-dependent and sensitive, spatial databases, query processing, nearest neighbors, data streams, sliding windows.

    Knowledge is at the Edge! How to Search in Distributed Machine Learning Models

    Full text link
    With the advent of the Internet of Things and Industry 4.0 an enormous amount of data is produced at the edge of the network. Due to a lack of computing power, this data is currently send to the cloud where centralized machine learning models are trained to derive higher level knowledge. With the recent development of specialized machine learning hardware for mobile devices, a new era of distributed learning is about to begin that raises a new research question: How can we search in distributed machine learning models? Machine learning at the edge of the network has many benefits, such as low-latency inference and increased privacy. Such distributed machine learning models can also learn personalized for a human user, a specific context, or application scenario. As training data stays on the devices, control over possibly sensitive data is preserved as it is not shared with a third party. This new form of distributed learning leads to the partitioning of knowledge between many devices which makes access difficult. In this paper we tackle the problem of finding specific knowledge by forwarding a search request (query) to a device that can answer it best. To that end, we use a entropy based quality metric that takes the context of a query and the learning quality of a device into account. We show that our forwarding strategy can achieve over 95% accuracy in a urban mobility scenario where we use data from 30 000 people commuting in the city of Trento, Italy.Comment: Published in CoopIS 201

    Weaving Entities into Relations: From Page Retrieval to Relation Mining on the Web

    Get PDF
    With its sheer amount of information, the Web is clearly an important frontier for data mining. While Web mining must start with content on the Web, there is no effective ``search-based'' mechanism to help sifting through the information on the Web. Our goal is to provide a such online search-based facility for supporting query primitives, upon which Web mining applications can be built. As a first step, this paper aims at entity-relation discovery, or E-R discovery, as a useful function-- to weave scattered entities on the Web into coherent relations. To begin with, as our proposal, we formalize the concept of E-R discovery. Further, to realize E-R discovery, as our main thesis, we abstract tuple ranking-- the essential challenge of E-R discovery-- as pattern-based cooccurrence analysis. Finally, as our key insight, we observe that such relation mining shares the same core functions as traditional page-retrieval systems, which enables us to build the new E-R discovery upon today's search engines, almost for free. We report our system prototype and testbed, WISDM-ER, with real Web corpus. Our case studies have demonstrated a high promise, achieving 83%-91% accuracy for real benchmark queries-- and thus the real possibilities of enabling ad-hoc Web mining tasks with online E-R discovery

    Ranked Spatial-keyword Search over Web-accessible Geotagged Data: State of the Art

    Get PDF
    Search engines, such as Google and Yahoo!, provide efficient retrieval and ranking of web pages based on queries consisting of a set of given keywords. Recent studies show that 20% of all Web queries also have location constraints, i.e., also refer to the location of a geotagged web page. An increasing number of applications support location based keyword search, including Google Maps, Bing Maps, Yahoo! Local, and Yelp. Such applications depict points of interest on the map and combine their location with the keywords provided by the associated document(s). The posed queries consist of two conditions: a set of keywords and a spatial location. The goal is to find points of interest with these keywords close to the location. We refer to such a query as spatial-keyword query. Moreover, mobile devices nowadays are enhanced with built-in GPS receivers, which permits applications (such as search engines or yellow page services) to acquire the location of the user implicitly, and provide location-based services. For instance, Google Mobile App provides a simple search service for smartphones where the location of the user is automatically captured and employed to retrieve results relevant to her current location. As an example, a search for ”pizza” results in a list of pizza restaurants nearby the user. Given the popularity of spatial-keyword queries and their wide applicability in practical scenarios, it is critical to (i) establish mechanisms for efficient processing of spatial-keyword queries, and (ii) support more expressive query formulation by means of novel 1 query types. Although studies on both keyword search and spatial queries do exist, the problem of combining the search capabilities of both simultaneously has received little attention

    On trip planning queries in spatial databases

    Full text link
    In this paper we discuss a new type of query in Spatial Databases, called Trip Planning Query (TPQ). Given a set of points P in space, where each point belongs to a category, and given two points s and e, TPQ asks for the best trip that starts at s, passes through exactly one point from each category, and ends at e. An example of a TPQ is when a user wants to visit a set of different places and at the same time minimize the total travelling cost, e.g. what is the shortest travelling plan for me to visit an automobile shop, a CVS pharmacy outlet, and a Best Buy shop along my trip from A to B? The trip planning query is an extension of the well-known TSP problem and therefore is NP-hard. The difficulty of this query lies in the existence of multiple choices for each category. In this paper, we first study fast approximation algorithms for the trip planning query in a metric space, assuming that the data set fits in main memory, and give the theory analysis of their approximation bounds. Then, the trip planning query is examined for data sets that do not fit in main memory and must be stored on disk. For the disk-resident data, we consider two cases. In one case, we assume that the points are located in Euclidean space and indexed with an Rtree. In the other case, we consider the problem of points that lie on the edges of a spatial network (e.g. road network) and the distance between two points is defined using the shortest distance over the network. Finally, we give an experimental evaluation of the proposed algorithms using synthetic data sets generated on real road networks

    On trip planning queries in spatial databases

    Full text link
    In this paper we discuss a new type of query in Spatial Databases, called Trip Planning Query (TPQ). Given a set of points P in space, where each point belongs to a category, and given two points s and e, TPQ asks for the best trip that starts at s, passes through exactly one point from each category, and ends at e. An example of a TPQ is when a user wants to visit a set of different places and at the same time minimize the total travelling cost, e.g. what is the shortest travelling plan for me to visit an automobile shop, a CVS pharmacy outlet, and a Best Buy shop along my trip from A to B? The trip planning query is an extension of the well-known TSP problem and therefore is NP-hard. The difficulty of this query lies in the existence of multiple choices for each category. In this paper, we first study fast approximation algorithms for the trip planning query in a metric space, assuming that the data set fits in main memory, and give the theory analysis of their approximation bounds. Then, the trip planning query is examined for data sets that do not fit in main memory and must be stored on disk. For the disk-resident data, we consider two cases. In one case, we assume that the points are located in Euclidean space and indexed with an Rtree. In the other case, we consider the problem of points that lie on the edges of a spatial network (e.g. road network) and the distance between two points is defined using the shortest distance over the network. Finally, we give an experimental evaluation of the proposed algorithms using synthetic data sets generated on real road networks
    • …
    corecore