126 research outputs found

    DESIGN OF MOBILE DATA COLLECTOR BASED CLUSTERING ROUTING PROTOCOL FOR WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless Sensor Networks (WSNs) consisting of hundreds or even thousands of nodes, canbe used for a multitude of applications such as warfare intelligence or to monitor the environment. A typical WSN node has a limited and usually an irreplaceable power source and the efficient use of the available power is of utmost importance to ensure maximum lifetime of eachWSNapplication. Each of the nodes needs to transmit and communicate sensed data to an aggregation point for use by higher layer systems. Data and message transmission among nodes collectively consume the largest amount of energy available in WSNs. The network routing protocols ensure that every message reaches thedestination and has a direct impact on the amount of transmissions to deliver messages successfully. To this end, the transmission protocol within the WSNs should be scalable, adaptable and optimized to consume the least possible amount of energy to suite different network architectures and application domains. The inclusion of mobile nodes in the WSNs deployment proves to be detrimental to protocol performance in terms of nodes energy efficiency and reliable message delivery. This thesis which proposes a novel Mobile Data Collector based clustering routing protocol for WSNs is designed that combines cluster based hierarchical architecture and utilizes three-tier multi-hop routing strategy between cluster heads to base station by the help of Mobile Data Collector (MDC) for inter-cluster communication. In addition, a Mobile Data Collector based routing protocol is compared with Low Energy Adaptive Clustering Hierarchy and A Novel Application Specific Network Protocol for Wireless Sensor Networks routing protocol. The protocol is designed with the following in mind: minimize the energy consumption of sensor nodes, resolve communication holes issues, maintain data reliability, finally reach tradeoff between energy efficiency and latency in terms of End-to-End, and channel access delays. Simulation results have shown that the Mobile Data Collector based clustering routing protocol for WSNs could be easily implemented in environmental applications where energy efficiency of sensor nodes, network lifetime and data reliability are major concerns

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modiļ¬ed our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the ļ¬eld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Cross-layer energy optimisation of routing protocols in wireless sensor networks

    Get PDF
    Recent technological developments in embedded systems have led to the emergence of a new class of networks, known asWireless Sensor Networks (WSNs), where individual nodes cooperate wirelessly with each other with the goal of sensing and interacting with the environment.Many routing protocols have been developed tomeet the unique and challenging characteristics of WSNs (notably very limited power resources to sustain an expected lifetime of perhaps years, and the restricted computation, storage and communication capabilities of nodes that are nonetheless required to support large networks and diverse applications). No standards for routing have been developed yet for WSNs, nor has any protocol gained a dominant position among the research community. Routing has a significant influence on the overall WSN lifetime, and providing an energy efficient routing protocol remains an open problem. This thesis addresses the issue of designing WSN routing methods that feature energy efficiency. A common time reference across nodes is required in mostWSN applications. It is needed, for example, to time-stamp sensor samples and for duty cycling of nodes. Alsomany routing protocols require that nodes communicate according to some predefined schedule. However, independent distribution of the time information, without considering the routing algorithm schedule or network topology may lead to a failure of the synchronisation protocol. This was confirmed empirically, and was shown to result in loss of connectivity. This can be avoided by integrating the synchronisation service into the network layer with a so-called cross-layer approach. This approach introduces interactions between the layers of a conventional layered network stack, so that the routing layer may share information with other layers. I explore whether energy efficiency can be enhanced through the use of cross-layer optimisations and present three novel cross-layer routing algorithms. The first protocol, designed for hierarchical, cluster based networks and called CLEAR (Cross Layer Efficient Architecture for Routing), uses the routing algorithm to distribute time information which can be used for efficient duty cycling of nodes. The second method - called RISS (Routing Integrated Synchronization Service) - integrates time synchronization into the network layer and is designed to work well in flat, non-hierarchical network topologies. The third method - called SCALE (Smart Clustering Adapted LEACH) - addresses the influence of the intra-cluster topology on the energy dissipation of nodes. I also investigate the impact of the hop distance on network lifetime and propose a method of determining the optimal location of the relay node (the node through which data is routed in a two-hop network). I also address the problem of predicting the transition region (the zone separating the region where all packets can be received and that where no data can be received) and I describe a way of preventing the forwarding of packets through relays belonging in this transition region. I implemented and tested the performance of these solutions in simulations and also deployed these routing techniques on sensor nodes using TinyOS. I compared the average power consumption of the nodes and the precision of time synchronization with the corresponding parameters of a number of existing algorithms. All proposed schemes extend the network lifetime and due to their lightweight architecture they are very efficient on WSN nodes with constrained resources. Hence it is recommended that a cross-layer approach should be a feature of any routing algorithm for WSNs

    Augmented reality device for first response scenarios

    Get PDF
    A prototype of a wearable computer system is proposed and implemented using commercial off-shelf components. The system is designed to allow the user to access location-specific information about an environment, and to provide capability for user tracking. Areas of applicability include primarily first response scenarios, with possible applications in maintenance or construction of buildings and other structures. Necessary preparation of the target environment prior to system\u27s deployment is limited to noninvasive labeling using optical fiducial markers. The system relies on computational vision methods for registration of labels and user position. With the system the user has access to on-demand information relevant to a particular real-world location. Team collaboration is assisted by user tracking and real-time visualizations of team member positions within the environment. The user interface and display methods are inspired by Augmented Reality1 (AR) techniques, incorporating a video-see-through Head Mounted Display (HMD) and fingerbending sensor glove.*. 1Augmented reality (AR) is a field of computer research which deals with the combination of real world and computer generated data. At present, most AR research is concerned with the use of live video imagery which is digitally processed and augmented by the addition of computer generated graphics. Advanced research includes the use of motion tracking data, fiducial marker recognition using machine vision, and the construction of controlled environments containing any number of sensors and actuators. (Source: Wikipedia) *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Adobe Acrobat; Microsoft Office; Windows MediaPlayer or RealPlayer

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulationā€”Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETsā€”Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETsā€”Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    A distributed data extraction and visualisation service for wireless sensor networks

    Get PDF
    With the increase in applications of wireless sensor networks, data extraction and visualisation have become a key issue to develop and operate these networks. Wireless sensor networks typically gather data at a discrete number of locations. By bestowing the ability to predict inter-node values upon the network, it is proposed that it will become possible to build applications that are unaware of the concrete reality of sparse data. The aim of this thesis is to develop a service for maximising information return from large scale wireless sensor networks. This aim will be achieved through the development of a distributed information extraction and visualisation service called the mapping service. In the distributed mapping service, groups of network nodes cooperate to produce local maps which are cached and merged at a sink node, producing a map of the global network. Such a service would greatly simplify the production of higher-level information-rich representations suitable for informing other network services and the delivery of field information visualisations. The proposed distributed mapping service utilises a blend of both inductive and deductive models to successfully map sense data and the universal physical principles. It utilises the special characteristics of the application domain to render visualisations in a map format that are a precise reflection of the concrete reality. This service is suitable for visualising an arbitrary number of sense modalities. It is capable of visualising from multiple independent types of the sense data to overcome the limitations of generating visualisations from a single type of a sense modality. Furthermore, the proposed mapping service responds to changes in the environmental conditions that may impact the visualisation performance by continuously updating the application domain model in a distributed manner. Finally, a newdistributed self-adaptation algorithm, Virtual Congress Algorithm,which is based on the concept of virtual congress is proposed, with the goal of saving more power and generating more accurate data visualisation.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulationā€”Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETsā€”Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETsā€”Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Blockchain for secured IoT and D2D applications over 5G cellular networks : a thesis by publications presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer and Electronics Engineering, Massey University, Albany, New Zealand

    Get PDF
    Author's Declaration: "In accordance with Sensors, SpringerOpen, and IEEEā€™s copyright policy, this thesis contains the accepted and published version of each manuscript as the final version. Consequently, the content is identical to the published versions."The Internet of things (IoT) is in continuous development with ever-growing popularity. It brings significant benefits through enabling humans and the physical world to interact using various technologies from small sensors to cloud computing. IoT devices and networks are appealing targets of various cyber attacks and can be hampered by malicious intervening attackers if the IoT is not appropriately protected. However, IoT security and privacy remain a major challenge due to characteristics of the IoT, such as heterogeneity, scalability, nature of the data, and operation in open environments. Moreover, many existing cloud-based solutions for IoT security rely on central remote servers over vulnerable Internet connections. The decentralized and distributed nature of blockchain technology has attracted significant attention as a suitable solution to tackle the security and privacy concerns of the IoT and device-to-device (D2D) communication. This thesis explores the possible adoption of blockchain technology to address the security and privacy challenges of the IoT under the 5G cellular system. This thesis makes four novel contributions. First, a Multi-layer Blockchain Security (MBS) model is proposed to protect IoT networks while simplifying the implementation of blockchain technology. The concept of clustering is utilized to facilitate multi-layer architecture deployment and increase scalability. The K-unknown clusters are formed within the IoT network by applying a hybrid Evolutionary Computation Algorithm using Simulated Annealing (SA) and Genetic Algorithms (GA) to structure the overlay nodes. The open-source Hyperledger Fabric (HLF) Blockchain platform is deployed for the proposed model development. Base stations adopt a global blockchain approach to communicate with each other securely. The quantitative arguments demonstrate that the proposed clustering algorithm performs well when compared to the earlier reported methods. The proposed lightweight blockchain model is also better suited to balance network latency and throughput compared to a traditional global blockchain. Next, a model is proposed to integrate IoT systems and blockchain by implementing the permissioned blockchain Hyperledger Fabric. The security of the edge computing devices is provided by employing a local authentication process. A lightweight mutual authentication and authorization solution is proposed to ensure the security of tiny IoT devices within the ecosystem. In addition, the proposed model provides traceability for the data generated by the IoT devices. The performance of the proposed model is validated with practical implementation by measuring performance metrics such as transaction throughput and latency, resource consumption, and network use. The results indicate that the proposed platform with the HLF implementation is promising for the security of resource-constrained IoT devices and is scalable for deployment in various IoT scenarios. Despite the increasing development of blockchain platforms, there is still no comprehensive method for adopting blockchain technology on IoT systems due to the blockchain's limited capability to process substantial transaction requests from a massive number of IoT devices. The Fabric comprises various components such as smart contracts, peers, endorsers, validators, committers, and Orderers. A comprehensive empirical model is proposed that measures HLF's performance and identifies potential performance bottlenecks to better meet blockchain-based IoT applications' requirements. The implementation of HLF on distributed large-scale IoT systems is proposed. The performance of the HLF is evaluated in terms of throughput, latency, network sizes, scalability, and the number of peers serviceable by the platform. The experimental results demonstrate that the proposed framework can provide a detailed and real-time performance evaluation of blockchain systems for large-scale IoT applications. The diversity and the sheer increase in the number of connected IoT devices have brought significant concerns about storing and protecting the large IoT data volume. Dependencies of the centralized server solution impose significant trust issues and make it vulnerable to security risks. A layer-based distributed data storage design and implementation of a blockchain-enabled large-scale IoT system is proposed to mitigate these challenges by using the HLF platform for distributed ledger solutions. The need for a centralized server and third-party auditor is eliminated by leveraging HLF peers who perform transaction verification and records audits in a big data system with the help of blockchain technology. The HLF blockchain facilitates storing the lightweight verification tags on the blockchain ledger. In contrast, the actual metadata is stored in the off-chain big data system to reduce the communication overheads and enhance data integrity. Finally, experiments are conducted to evaluate the performance of the proposed scheme in terms of throughput, latency, communication, and computation costs. The results indicate the feasibility of the proposed solution to retrieve and store the provenance of large-scale IoT data within the big data ecosystem using the HLF blockchain
    • ā€¦
    corecore