7 research outputs found

    MetaXMorph: Hierarchical Transformation of Data with Metadata

    Get PDF
    This research is about transforming data. Data comes in different shapes; it can be structured as a graph, a tree, a collection of tables, or some other shape. In this thesis, we focus on data structured as a tree, which is known as hierarchical data. The same data could be structured in many different tree shapes. Previously it was shown how to transform data from one tree shape, one hierarchy to another without losing any information. But sometimes the pieces of the hierarchy are annotated or associated with metadata, that is, with data about the data itself. The metadata can have special semantics that must be preserved when the data is transformed. Previous research also sketched how to transform hierarchical data annotated with metadata without losing information while preserving the semantics of the metadata. In this thesis, we implement the research on transforming data with metadata by extending XMorph, a data transformation language. And we evaluate the extension showing that the overhead is modest

    A detailed investigation of interoperability for web services

    Get PDF
    The thesis presents a qualitative survey of web services' interoperability, offering a snapshot of development and trends at the end of 2005. It starts by examining the beginnings of web services in earlier distributed computing and middleware technologies, determining the distance from these approaches evident in current web-services architectures. It establishes a working definition of web services, examining the protocols that now seek to define it and the extent to which they contribute to its most crucial feature, interoperability. The thesis then considers the REST approach to web services as being in a class of its own, concluding that this approach to interoperable distributed computing is not only the simplest but also the most interoperable. It looks briefly at interoperability issues raised by technologies in the wider arena of Service Oriented Architecture. The chapter on protocols is complemented by a chapter that validates the qualitative findings by examining web services in practice. These have been implemented by a variety of toolkits and on different platforms. Included in the study is a preliminary examination of JAX-WS, the replacement for JAX-RPC, which is still under development. Although the main language of implementation is Java, the study includes services in C# and PHP and one implementation of a client using a Firefox extension. The study concludes that different forms of web service may co-exist with earlier middleware technologies. While remaining aware that there are still pitfalls that might yet derail the movement towards greater interoperability, the conclusion sounds an optimistic note that recent cooperation between different vendors may yet result in a solution that achieves interoperability through core web-service standards

    Interactive visualisation tools for supporting taxonomists working practice.

    Get PDF
    The necessity for scientists and others to use consistent terminology has recently beenregarded as fundamental to advancing scientific research, particularly where data fromdisparate sources must be shared, compared or integrated. One area where there aresignificant difficulties with the quality of collected data is the field of taxonomicdescription. Taxonomic description lies at the heart of the classification of organismsand communication of ideas of biodiversity. As part of their working practice,taxonomists need to gather descriptive data about a number of specimens on aconsistent basis for individual projects. Collecting semantically well-defined structureddata could improve the clarity and comparability of such data. No tools howevercurrently exist to allow taxonomists to do so within their working practice.Ontologies are increasingly used to describe and define complex domain data. As a partof related research an ontology of descriptive terminology for controlling the storageand use of flowering plant description data was developed.This work has applied and extended model-based user interface developmentenvironments to utilise such an ontology for the automatic generation of appropriatedata entry interfaces that support semantically well defined and structured descriptivedata. The approach taken maps the ontology to a system domain model, which ataxonomist can then specialise using their domain expertise, for their data entry needs asrequired for individual projects. Based on this specialised domain knowledge, thesystem automatically generates appropriate data entry interfaces that capture dataconsistent with the original ontology. Compared with traditional model-based userautomatic interface development environments, this approach also has the potential toreduce the labour requirements for the expert developer.The approach has also been successfully tested to generate data entry interfaces basedon an XML schema for the exchange of biodiversity datasets

    Interactive visualisation tools for supporting taxonomists working practice.

    Get PDF
    The necessity for scientists and others to use consistent terminology has recently beenregarded as fundamental to advancing scientific research, particularly where data fromdisparate sources must be shared, compared or integrated. One area where there aresignificant difficulties with the quality of collected data is the field of taxonomicdescription. Taxonomic description lies at the heart of the classification of organismsand communication of ideas of biodiversity. As part of their working practice,taxonomists need to gather descriptive data about a number of specimens on aconsistent basis for individual projects. Collecting semantically well-defined structureddata could improve the clarity and comparability of such data. No tools howevercurrently exist to allow taxonomists to do so within their working practice.Ontologies are increasingly used to describe and define complex domain data. As a partof related research an ontology of descriptive terminology for controlling the storageand use of flowering plant description data was developed.This work has applied and extended model-based user interface developmentenvironments to utilise such an ontology for the automatic generation of appropriatedata entry interfaces that support semantically well defined and structured descriptivedata. The approach taken maps the ontology to a system domain model, which ataxonomist can then specialise using their domain expertise, for their data entry needs asrequired for individual projects. Based on this specialised domain knowledge, thesystem automatically generates appropriate data entry interfaces that capture dataconsistent with the original ontology. Compared with traditional model-based userautomatic interface development environments, this approach also has the potential toreduce the labour requirements for the expert developer.The approach has also been successfully tested to generate data entry interfaces basedon an XML schema for the exchange of biodiversity datasets

    Experimental Evaluation of Growing and Pruning Hyper Basis Function Neural Networks Trained with Extended Information Filter

    Get PDF
    In this paper we test Extended Information Filter (EIF) for sequential training of Hyper Basis Function Neural Networks with growing and pruning ability (HBF-GP). The HBF neuron allows different scaling of input dimensions to provide better generalization property when dealing with complex nonlinear problems in engineering practice. The main intuition behind HBF is in generalization of Gaussian type of neuron that applies Mahalanobis-like distance as a distance metrics between input training sample and prototype vector. We exploit concept of neuron’s significance and allow growing and pruning of HBF neurons during sequential learning process. From engineer’s perspective, EIF is attractive for training of neural networks because it allows a designer to have scarce initial knowledge of the system/problem. Extensive experimental study shows that HBF neural network trained with EIF achieves same prediction error and compactness of network topology when compared to EKF, but without the need to know initial state uncertainty, which is its main advantage over EKF

    Bioinspired metaheuristic algorithms for global optimization

    Get PDF
    This paper presents concise comparison study of newly developed bioinspired algorithms for global optimization problems. Three different metaheuristic techniques, namely Accelerated Particle Swarm Optimization (APSO), Firefly Algorithm (FA), and Grey Wolf Optimizer (GWO) are investigated and implemented in Matlab environment. These methods are compared on four unimodal and multimodal nonlinear functions in order to find global optimum values. Computational results indicate that GWO outperforms other intelligent techniques, and that all aforementioned algorithms can be successfully used for optimization of continuous functions

    Друга міжнародна конференція зі сталого майбутнього: екологічні, технологічні, соціальні та економічні питання (ICSF 2021). Кривий Ріг, Україна, 19-21 травня 2021 року

    Get PDF
    Second International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2021). Kryvyi Rih, Ukraine, May 19-21, 2021.Друга міжнародна конференція зі сталого майбутнього: екологічні, технологічні, соціальні та економічні питання (ICSF 2021). Кривий Ріг, Україна, 19-21 травня 2021 року
    corecore