30,985 research outputs found

    Collaborative trails in e-learning environments

    Get PDF
    This deliverable focuses on collaboration within groups of learners, and hence collaborative trails. We begin by reviewing the theoretical background to collaborative learning and looking at the kinds of support that computers can give to groups of learners working collaboratively, and then look more deeply at some of the issues in designing environments to support collaborative learning trails and at tools and techniques, including collaborative filtering, that can be used for analysing collaborative trails. We then review the state-of-the-art in supporting collaborative learning in three different areas – experimental academic systems, systems using mobile technology (which are also generally academic), and commercially available systems. The final part of the deliverable presents three scenarios that show where technology that supports groups working collaboratively and producing collaborative trails may be heading in the near future

    Designing online role plays with a focus on story development to support engagement and critical learning for higher education students

    Full text link
    Online role plays, as they are designed for use in higher education in Australia and internationally, are active and authentic learning activities (Wills, Leigh & Ip, 2011). In online role plays, students take a character role in developing a story that serves as a metaphor for real-life experience in order to develop a potentially wide range of subject-related and generic learning outcomes. The characteristics of these stories are rarely considered as factors in the design―and success―of these activities. The unspoken cultural assumptions, norms and rules in the stories that impact on the meanings students make from their experiences are also rarely scrutinised in the online role play literature. This paper presents findings from a case study of an asynchronous text-based online role play involving politics and journalism students from three Australian universities. The findings highlight the centrality of students’ collaborative story-building activity to their engagement and learning, including their development of critical perspectives. The study underlines the importance of certain aspects of the role play\u27s design to support students\u27 story-building activity

    Teaching and learning in virtual worlds: is it worth the effort?

    Get PDF
    Educators have been quick to spot the enormous potential afforded by virtual worlds for situated and authentic learning, practising tasks with potentially serious consequences in the real world and for bringing geographically dispersed faculty and students together in the same space (Gee, 2007; Johnson and Levine, 2008). Though this potential has largely been realised, it generally isn’t without cost in terms of lack of institutional buy-in, steep learning curves for all participants, and lack of a sound theoretical framework to support learning activities (Campbell, 2009; Cheal, 2007; Kluge & Riley, 2008). This symposium will explore the affordances and issues associated with teaching and learning in virtual worlds, all the time considering the question: is it worth the effort

    Transforming pre-service teacher curriculum: observation through a TPACK lens

    Get PDF
    This paper will discuss an international online collaborative learning experience through the lens of the Technological Pedagogical Content Knowledge (TPACK) framework. The teacher knowledge required to effectively provide transformative learning experiences for 21st century learners in a digital world is complex, situated and changing. The discussion looks beyond the opportunity for knowledge development of content, pedagogy and technology as components of TPACK towards the interaction between those three components. Implications for practice are also discussed. In today’s technology infused classrooms it is within the realms of teacher educators, practising teaching and pre-service teachers explore and address effective practices using technology to enhance learning

    Teaching Construction in the Virtual University: the WINDS project

    No full text
    This paper introduces some of the Information Technology solutions adopted in Web based INtelligent Design Support (WINDS) to support education in A/E/C design. The WINDS project WINDS is an EC-funded project in the 5th Framework, Information Society Technologies programme, Flexible University key action. WINDS is divided into two actions: ·The research technology action is going to implement a learning environment integrating an intelligent tutoring system, a computer instruction management system and a set of co-operative supporting tools. ·The development action is going to build a large knowledge base supporting Architecture and Civil Engineering Design Courses and to experiment a comprehensive Virtual School of Architecture and Engineering Design. During the third year of the project, more than 400 students all over Europe will attend the Virtual School. During the next three years the WINDS project will span a total effort of about 150 man-years from 28 partners of 10 European countries. The missions of the WINDS project are: Advanced Methodologies in Design Education. WINDS drives a breakdown with conventional models in design education, i.e. classroom or distance education. WINDS implements a problem oriented knowledge transfer methodology following Roger Schank's Goal Based Scenario (GBS) pedagogical methodology. GBS encourages the learning of both skills and cases, and fosters creative problem solving. Multidisciplinary Design Education. Design requires creative synthesis and open-end problem definition at the intersection of several disciplines. WINDS experiments a valuable integration of multidisciplinary design knowledge and expertise to produce a high level standard of education. Innovative Representation, Delivery and Access to Construction Education. WINDS delivers individual education customisation by allowing the learner access through the Internet to a wide range of on-line courses and structured learning objects by means of personally tailored learning strategies. WINDS promotes the 3W paradigm: learn What you need, Where you want, When you require. Construction Practice. Construction industry is a repository of ""best practices"" and knowledge that the WINDS will profit. WINDS system benefits the ISO10303 and IFC standards to acquire knowledge of the construction process directly in digital format. On the other hand, WINDS reengineers the knowledge in up-to-date courses, educational services, which the industries can use to provide just-in-time rather than in-advance learning. WINDS IT Solutions The missions of the WINDS project state many challenging requirements both in knowledge and system architecture. Many of the solutions adopted in these fields are innovative; others are evolution of existing technologies. This paper focuses on the integration of this set of state-of-the-art technologies in an advanced and functionally sound Computer Aided Instruction system for A/E/C Design. In particular the paper deals with the following aspects: Standard Learning Technology Architecture The WINDS system relies on the in progress IEEE 1484.1 Learning Technology Standard Architecture. According to this standard the system consists of two data stores, the Knowledge Library and the Record Database, and four process: System Coach, Delivery, Evaluation and the Learner. WINDS implements the Knowledge Library into a three-tier architecture: 1.Learning Objects: ·Learning Units are collections of text and multimedia data. ·Models are represented in either IFC or STEP formats. ·Cases are sets of Learning Units and Models. Cases are noteworthy stories, which describes solutions, integrate technical detail, contain relevant design failures etc. 2.Indexes refer to the process in which the identification of relevant topics in design cases and learning units takes place. Indexing process creates structures of Learning Objects for course management, profile planning procedures and reasoning processes. 3.Courses are taxonomies of either Learning Units or a design task and Course Units. Knowledge Representation WINDS demonstrates that it is possible and valuable to integrate a widespread design expertise so that it can be effectively used to produce a high level standard of education. To this aim WINDS gathers area knowledge, design skills and expertise under the umbrellas of common knowledge representation structures and unambiguous semantics. Cases are one of the most valuable means for the representation of design expertise. A Case is a set of Learning Units and Product Models. Cases are noteworthy stories, which describe solutions, integrate technical details, contain relevant design failures, etc. Knowledge Integration Indexes are a medium among different kind of knowledge: they implement networks for navigation and access to disparate documents: HTML, video, images, CAD and product models (STEP or IFC). Concept indexes link learning topics to learning objects and group them into competencies. Index relationships are the base of the WINDS reasoning processes, and provide the foundation for system coaching functions, which proactively suggest strategies, solutions, examples and avoids students' design deadlock. Knowledge Distribution To support the data stores and the process among the partners in 10 countries efficiently, WINDS implements an object oriented client/server as COM objects. Behind the DCOM components there is the Dynamic Kernel, which dynamically embodies and maintains data stores and process. Components of the Knowledge Library can reside on several servers across the Internet. This provides for distributed transactions, e.g. a change in one Learning Object affects the Knowledge Library spread across several servers in different countries. Learning objects implemented as COM objects can wrap ownership data. Clear and univocal definition of ownerships rights enables Universities, in collaboration with telecommunication and publisher companies, to act as "education brokers". Brokerage in education and training is an innovative paradigm to provide just-in-time and personally customised value added learning knowledg

    Supporting organisational learning: an overview of the ENRICH approach

    Get PDF
    Traditional training separates learning from the work context in which the newly acquired knowledge is to be applied. This requires the worker themselves to apply imparted theoretical knowledge to knowledge in practice, a process that is grossly inefficient. The ENRICH approach builds on organisational learning theory to intertwine working and learning. The ENRICH methodology incorporates theories of learning at the individual, group and organisational level. Individual level learning is supported through the provision of semantically related resources to support problem reframing and to challenge assumptions. Group learning is supported through the evolution of domain concepts through work documents and representations linked to formal models of group knowledge, and the development of group practices and perspectives through enhanced sharing and collaboration. Organisational learning is supported through exposure to customs and conventions of other groups through shared best practices and knowledge models. The approach is being investigated in a range of industrial settings and applications
    • 

    corecore