37,160 research outputs found

    On sharing and synchronizing groupware calendars under android platform

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Sharing a calendar of tasks and events is a cornerstone in collaborative group work. Indeed, the individual work of the members of the group as well as the group work as a whole need the calendar to guide their activity and to meet the deadlines, milestones, deliverables of a project, etc. Additionally the members of the group should be able to work both offline and online, which arises when members of the group use smartphones and can eventually run out of Internet connection from time to time, or simply want to develop some activities locally. In the former case, they should have access to the calendar locally, while in the later case they should access the calendar online, shared by all members of the group. In both cases they should be able to see eventually the same information, namely the local calendars of the members should be synchronized with the group calendar. For the case of smartphones under Android system, one solution could be using the Google calendar, however, that is not easily tailorable to collaborative group work. In this paper we present an analysis, design and implementation of group work calendar that meets several requirements such as 1) sharing among all of members of the group, 2) synchronization among local calendars of members and global group calendar, 3) conflict resolution through a voting system, 4) awareness of changes in the entries (tasks, members, events, etc.) of the calendar and 5) all these requirements under proper privacy, confidentiality and security mechanisms. Moreover, we extend the sharing of calendars among different groups, a situation which often arises in enterprises when different groups need to be aware of other projects' development, or, when some members participate in more than one project at the same time.Peer ReviewedPostprint (author's final draft

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    The Future Affordances of Digital Learning and Teaching within The School of Education

    Get PDF
    This report illustrates the discussion outcome on digital education within the University of Glasgow School of Education. It is not a strategy document but it does explore the conditions for nurturing digital culture and how these can be channelled into a strategy on digital learning and teaching. The report is based on a review of literature and on a number of local, national and international case study vignettes

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    ALT-C 2010 - Conference Proceedings

    Get PDF

    Designing electronic collaborative learning environments

    Get PDF
    Electronic collaborative learning environments for learning and working are in vogue. Designers design them according to their own constructivist interpretations of what collaborative learning is and what it should achieve. Educators employ them with different educational approaches and in diverse situations to achieve different ends. Students use them, sometimes very enthusiastically, but often in a perfunctory way. Finally, researchers study them and—as is usually the case when apples and oranges are compared—find no conclusive evidence as to whether or not they work, where they do or do not work, when they do or do not work and, most importantly, why, they do or do not work. This contribution presents an affordance framework for such collaborative learning environments; an interaction design procedure for designing, developing, and implementing them; and an educational affordance approach to the use of tasks in those environments. It also presents the results of three projects dealing with these three issues

    Personal Volunteer Computing

    Full text link
    We propose personal volunteer computing, a novel paradigm to encourage technical solutions that leverage personal devices, such as smartphones and laptops, for personal applications that require significant computations, such as animation rendering and image processing. The paradigm requires no investment in additional hardware, relying instead on devices that are already owned by users and their community, and favours simple tools that can be implemented part-time by a single developer. We show that samples of personal devices of today are competitive with a top-of-the-line laptop from two years ago. We also propose new directions to extend the paradigm

    Mobile phone and e-government in Turkey: practices and technological choices at the cross-road

    Get PDF
    Enhanced data services through mobile phones are expected to be soon fully transactional and embedded within future mobile consumption practices. While private services will surely continue to take the lead, others such as government and NGOs will become more prominent m-players. It is not yet sure which form of technological standards will take the lead including enhance SMS based operations or Internet based specifically developed mobile phone applications. With the introduction of interactive transactions via mobile phones, currently untapped segment of the populations (without computers) have the potential to be accessed. Our research, as a reflection of the current market situation in an emerging country context, in the case of mobile phones analyzes the current needs or emergence of dependencies regarding the use of m/e-government services from the perspective of municipality officers. We contend that more research is needed to understand current preparatory bottlenecks and front loading activities to be able to encourage future intention to use e-government services through mobile phone technologies. This study highlights and interprets the current emerging practices and praxis for consuming m-government services within government
    • 

    corecore