1,263 research outputs found

    A review of the empirical studies of computer supported human-to-human communication

    Get PDF
    This paper presents a review of the empirical studies of human-to-human communication which have been carried out over the last three decades. Although this review is primarily concerned with the empirical studies of computer supported human-to-human communication, a number of studies dealing with group work in non-computer-based collaborative environments, which form the basis of many of the empirical studies of the recent years in the area of CSCW, are also discussed. The concept of person and task spaces is introduced and then subsequently used to categorise the large volume of studies reported in this review. This paper also gives a comparative analysis of the findings of these studies, and draws a number of general conclusions to guide the design and evaluation of future CSCW systems

    Space for Two to Think: Large, High-Resolution Displays for Co-located Collaborative Sensemaking

    Get PDF
    Large, high-resolution displays carry the potential to enhance single display groupware collaborative sensemaking for intelligence analysis tasks by providing space for common ground to develop, but it is up to the visual analytics tools to utilize this space effectively. In an exploratory study, we compared two tools (Jigsaw and a document viewer), which were adapted to support multiple input devices, to observe how the large display space was used in establishing and maintaining common ground during an intelligence analysis scenario using 50 textual documents. We discuss the spatial strategies employed by the pairs of participants, which were largely dependent on tool type (data-centric or function-centric), as well as how different visual analytics tools used collaboratively on large, high-resolution displays impact common ground in both process and solution. Using these findings, we suggest design considerations to enable future co-located collaborative sensemaking tools to take advantage of the benefits of collaborating on large, high-resolution displays

    Large High Resolution Displays for Co-Located Collaborative Intelligence Analysis

    Get PDF
    Large, high-resolution vertical displays carry the potential to increase the accuracy of collaborative sensemaking, given correctly designed visual analytics tools. From an exploratory user study using a fictional intelligence analysis task, we investigated how users interact with the display to construct spatial schemas and externalize information, as well as how they establish shared and private territories. We investigated the spatial strategies of users partitioned by tool type used (document- or entity-centric). We classified the types of territorial behavior exhibited in terms of how the users interacted with the display (integrated or independent workspaces). Next, we examined how territorial behavior impacted the common ground between the pairs of users. Finally, we recommend design guidelines for building co-located collaborative visual analytics tools specifically for use on large, high-resolution vertical displays

    Evaluating groupware support for software engineering students

    Get PDF
    Software engineering tasks, during both development and maintenance, typically involve teamwork using computers. Team members rarely work on isolated computers. An underlying assumption of our research is that software engineering teams will work more effectively if adequately supported by network-based groupware technology. Experience of working with groupware and evaluating groupware systems will also give software engineering students a direct appreciation of the requirements of engineering such systems. This research is investigating the provision of such network-based support for software engineering students and the impact these tools have on their groupwork. We will first describe our experiences gained through the introduction of an asynchronous virtual environment ­ SEGWorld to support groupwork during the Software Engineering Group (SEG) project undertaken by all second year undergraduates within the Department of Computer Science. Secondly we will describe our Computer Supported Cooperative Work (CSCW) module which has been introduced into the students' final year of study as a direct result of our experience with SEG, and in particular its role within Software Engineering. Within this CSCW module the students have had the opportunity to evaluate various groupware tools. This has enabled them to take a retrospective view of their experience of SEGWorld and its underlying system, BSCW, one year on. We report our findings for SEG in the form of a discussion of the hypotheses we formulated on how the SEGs would use SEGWorld, and present an initial qualitative assessment of student feedback from the CSCW module

    Digital information support for concept design

    Get PDF
    This paper outlines the issues in effective utilisation of digital resources in conceptual design. Access to appropriate information acts as stimuli and can lead to better substantiated concepts. This paper addresses the issues of presenting such information in a digital form for effective use, exploring digital libraries and groupware as relevant literature areas, and argues that improved integration of these two technologies is necessary to better support the concept generation task. The development of the LauLima learning environment and digital library is consequently outlined. Despite its attempts to integrate the designers' working space and digital resources, continuing issues in library utilisation and migration of information to design concepts are highlighted through a class study. In light of this, new models of interaction to increase information use are explored

    Enhancing design learning using groupware

    Get PDF
    Project work is increasingly used to help engineering students integrate, apply and expand on knowledge gained from theoretical classes in their curriculum and expose students to 'real world' tasks [1]. To help facilitate this process, the department of Design, Manufacture and Engineering Management at the University of Strathclyde has developed a web±based groupware product called LauLima to help students store, share, structure and apply information when they are working in design teams. This paper describes a distributed design project class in which LauLima has been deployed in accordance with a Design Knowledge Framework that describes how design knowledge is generated and acquired in industry, suggesting modes of design teaching and learning. Alterations to the presentation, delivery and format of the class are discussed, and primarily relate to embedding a more rigorous form of project-based learning. The key educational changes introduced to the project were: the linking of information concepts to support the design process; a multidisciplinary team approach to coaching; and a distinction between formal and informal resource collections. The result was a marked improvement in student learning and ideation

    Preserving Communication Context. Virtual workspace and interpersonal space in Japanese CSCW.

    Get PDF
    The past decade has seen the development of a perspective\ud holding that technology is socially constructed (Mackenzie and Wacjman, 1985; Bijker, Hughes and Pinch, 1987; Bijker and Law, 1992). This paper examines the social construction of one group of technologies, systems for computer supported cooperative work (CSCW). It describes the design of CSCW in Japan, with particular attention to the influence of culture on the design process. Two case studies are presented to illustrate the argument that culture is an important factor in technology design, despite commonly held assumptions about the neutrality and objectivity of science and technology. The paper further argues that, by looking at\ud CSCW systems as texts which reflect the context of their production and the society from which they come, we may be better able to understand the transformations that operate when these texts are “read” in the contexts of their implementation

    Using natural user interfaces to support synchronous distributed collaborative work

    Get PDF
    Synchronous Distributed Collaborative Work (SDCW) occurs when group members work together at the same time from different places together to achieve a common goal. Effective SDCW requires good communication, continuous coordination and shared information among group members. SDCW is possible because of groupware, a class of computer software systems that supports group work. Shared-workspace groupware systems are systems that provide a common workspace that aims to replicate aspects of a physical workspace that is shared among group members in a co-located environment. Shared-workspace groupware systems have failed to provide the same degree of coordination and awareness among distributed group members that exists in co-located groups owing to unintuitive interaction techniques that these systems have incorporated. Natural User Interfaces (NUIs) focus on reusing natural human abilities such as touch, speech, gestures and proximity awareness to allow intuitive human-computer interaction. These interaction techniques could provide solutions to the existing issues of groupware systems by breaking down the barrier between people and technology created by the interaction techniques currently utilised. The aim of this research was to investigate how NUI interaction techniques could be used to effectively support SDCW. An architecture for such a shared-workspace groupware system was proposed and a prototype, called GroupAware, was designed and developed based on this architecture. GroupAware allows multiple users from distributed locations to simultaneously view and annotate text documents, and create graphic designs in a shared workspace. Documents are represented as visual objects that can be manipulated through touch gestures. Group coordination and awareness is maintained through document updates via immediate workspace synchronization, user action tracking via user labels and user availability identification via basic proxemic interaction. Members can effectively communicate via audio and video conferencing. A user study was conducted to evaluate GroupAware and determine whether NUI interaction techniques effectively supported SDCW. Ten groups of three members each participated in the study. High levels of performance, user satisfaction and collaboration demonstrated that GroupAware was an effective groupware system that was easy to learn and use, and effectively supported group work in terms of communication, coordination and information sharing. Participants gave highly positive comments about the system that further supported the results. The successful implementation of GroupAware and the positive results obtained from the user evaluation provides evidence that NUI interaction techniques can effectively support SDCW

    RECOLED: A group-aware collaborative text editor for capturing document history

    Get PDF
    This paper presents a usability analysis of RECOLED, a shared document editor which supports recording of audio communication in remote collaborative writing sessions, and transparent monitoring of interactions, such as editing, gesturing and scrolling. The editor has been designed so that the collaboration results in the production of a multimedia document history which enriches the final product of the writing activity and can serve as a basis for post-meeting information retrieval. A discussion is presented on how post-meeting processing can highlight the usefulness of such histories in terms of tracking information that would be normally lost in usual collaborative editing settings
    • …
    corecore