83 research outputs found

    FAT-DBT engine (framework for application-tailorcd, co-designcd dynamic binary translation enginc)

    Get PDF
    Tese de Doutoramento em Engenharia Eletrónica e de Computadores (PDEEC)Dynamic binary translation (DBT) has emerged as an execution engine that monitors, modifies and possibly optimizes running applications for specific purposes. DBT is deployed as an execution layer between the application binary and the operating system or host-machine, which creates opportunities for collecting runtime information. Initially, DBT supported binary-level compatibility, but based on the collected runtime information, it also became popular for code instrumentation, ISA-virtualization and dynamic-optimization purposes. Building a DBT system brings many challenges, as it involves complex components integration and requires deep architectural level knowledge. Moreover, DBT incurs in significant overheads, mainly due to code decoding and translation, as well as execution along with general functionalities emulation. While initially conceived bearing in mind high-end architectures for performance demanding applications, such challenges become even more evident when directing DBT to embedded systems. The latter makes an effective deployment very challenging due to its complexity, tight constraints on memory, and limited performance and power. Legacy support and binary compatibility is a topic of relevant interest in such systems, due to their broad dissemination among industrial environments and wide utilization in sensing and monitoring processes, from yearly times, with considerable maintenance and replacement costs. To address such issues, this thesis intents to contribute with a solution that leverages an optimized and accelerated dynamic binary translator targeting resourceconstrained embedded systems while supporting legacy systems. The developed work allows to: (1) evaluate the potential of DBT for legacy support purposes on the resource-constrained embedded systems; (2) achieve a configurable DBT architecture specialized for resource-constrained embedded systems; (3) address DBT translation, execution and emulation overheads through the combination of software and hardware; and (4) promote DBT utilization as a legacy support tool for the industry as a end-product.A tradução binária dinâmica (TBD) emergiu como um motor de execução que permite a modificação e possível optimização de código executável para um determinado propósito. A TBD é integrada nos sistemas como uma camada de execução entre o código binário executável e o sistema operativo ou a máquina hospedeira alvo, o que origina oportunidades de recolha de informação de execução. A criação de um sistema de TBD traz consigo diversos desafios, uma vez que envolve a integração de componentes complexos e conhecimentos aprofundados das arquitecturas de processadores envolvidas. Ademais, a utilização de TBD gera diversos custos computacionais indirectos, maioritariamente devido à descodificação e tradução de código, bem como emulação de funcionalidades em geral. Considerando que a TBD foi inicialmente pensada para sistemas de gama alta, os desafios mencionados tornam-se ainda mais evidentes quando a mesma é aplicada em sistemas embebidos. Nesta área os limitados recursos de memória e os exigentes requisitos de desempenho e consumo energético,tornam uma implementação eficiente de TBD muito difícil de obter. Compatibilidade binária e suporte a código de legado são tópicos de interesse em sistemas embebidos, justificado pela ampla disseminação dos mesmos no meio industrial para tarefas de sensorização e monitorização ao longo dos tempos, reforçado pelos custos de manutenção adjacentes à sua utilização. Para endereçar os desafios descritos, nesta tese propõe-se uma solução para potencializar a tradução binária dinâmica, optimizada e com aceleração, para suporte a código de legado em sistemas embebidos de baixa gama. O trabalho permitiu (1) avaliar o potencial da TBD quando aplicada ao suporte a código de legado em sistemas embebidos de baixa gama; (2) a obtenção de uma arquitectura de TBD configurável e especializada para este tipo de sistemas; (3) reduzir os custos computacionais associados à tradução, execução e emulação, através do uso combinado de software e hardware; (4) e promover a utilização na industria de TBD como uma ferramenta de suporte a código de legado.This thesis was supported by a PhD scholarship from Fundação para a Ciência e Tecnologia, SFRH/BD/81681/201

    Correct synthesis and integration of compiler-generated function units

    Get PDF
    PhD ThesisComputer architectures can use custom logic in addition to general pur- pose processors to improve performance for a variety of applications. The use of custom logic allows greater parallelism for some algorithms. While conventional CPUs typically operate on words, ne-grained custom logic can improve e ciency for many bit level operations. The commodi ca- tion of eld programmable devices, particularly FPGAs, has improved the viability of using custom logic in an architecture. This thesis introduces an approach to reasoning about the correctness of compilers that generate custom logic that can be synthesized to provide hardware acceleration for a given application. Compiler intermediate representations (IRs) and transformations that are relevant to genera- tion of custom logic are presented. Architectures may vary in the way that custom logic is incorporated, and suitable abstractions are used in order that the results apply to compilation for a variety of the design parameters that are introduced by the use of custom logic

    Design and management of image processing pipelines within CPS : Acquired experience towards the end of the FitOptiVis ECSEL Project

    Get PDF
    Cyber-Physical Systems (CPSs) are dynamic and reactive systems interacting with processes, environment and, sometimes, humans. They are often distributed with sensors and actuators, characterized for being smart, adaptive, predictive and react in real-time. Indeed, image- and video-processing pipelines are a prime source for environmental information for systems allowing them to take better decisions according to what they see. Therefore, in FitOptiVis, we are developing novel methods and tools to integrate complex image- and video-processing pipelines. FitOptiVis aims to deliver a reference architecture for describing and optimizing quality and resource management for imaging and video pipelines in CPSs both at design- and run-time. The architecture is concretized in low-power, high-performance, smart components, and in methods and tools for combined design-time and run-time multi-objective optimization and adaptation within system and environment constraints.Peer reviewe

    A Survey and Evaluation of FPGA High-Level Synthesis Tools

    Get PDF
    High-level synthesis (HLS) is increasingly popular for the design of high-performance and energy-efficient heterogeneous systems, shortening time-to-market and addressing today's system complexity. HLS allows designers to work at a higher-level of abstraction by using a software program to specify the hardware functionality. Additionally, HLS is particularly interesting for designing field-programmable gate array circuits, where hardware implementations can be easily refined and replaced in the target device. Recent years have seen much activity in the HLS research community, with a plethora of HLS tool offerings, from both industry and academia. All these tools may have different input languages, perform different internal optimizations, and produce results of different quality, even for the very same input description. Hence, it is challenging to compare their performance and understand which is the best for the hardware to be implemented. We present a comprehensive analysis of recent HLS tools, as well as overview the areas of active interest in the HLS research community. We also present a first-published methodology to evaluate different HLS tools. We use our methodology to compare one commercial and three academic tools on a common set of C benchmarks, aiming at performing an in-depth evaluation in terms of performance and the use of resources

    Combining FPGA prototyping and high-level simulation approaches for Design Space Exploration of MPSoCs

    Get PDF
    Modern embedded systems are parallel, component-based, heterogeneous and finely tuned on the basis of the workload that must be executed on them. To improve design reuse, Application Specific Instruction-set Processors (ASIPs) are often employed as building blocks in such systems, as a solution capable of satisfying the required functional and physical constraints (e.g. throughput, latency, power or energy consumption etc.), while providing, at the same time, high flexibility and adaptability. Composing a multi-processor architecture including ASIPs and mapping parallel applications onto it is a design activity that require an extensive Design Space Exploration process (DSE), to result in cost-effective systems. The work described here aims at defining novel methodologies for the application-driven customizations of such highly heterogeneous embedded systems. The issue is tackled at different levels, integrating different tools. High-level event-based simulation is a widely used technique that offers speed and flexibility as main points of strength, but needs, as a preliminary input and periodically during the iteration process, calibration data that must be acquired by means of more accurate evaluation methods. Typically, this calibration is performed using instruction-level cycleaccurate simulators that, however, turn out to be very slow, especially when complete multiprocessor systems must be evaluated or when the grain of the calibration is too fine, while FPGA approaches have shown to performbetter for this particular applications. FPGA-based emulation techniques have been proposed in the recent past as an alternative solution to the software-based simulation approach, but some further steps are needed before they can be effectively exploitedwithin architectural design space exploration. Firstly, some kind of technology-awareness must be introduced, to enable the translation of the emulation results into a pre-estimation of a prospective ASIC implementation of the design. Moreover, when performing architectural DSE, a significant number of different candidate design points has to be evaluated and compared. In this case, if no countermeasures are taken, the advantages achievable with FPGAs, in terms of emulation speed, are counterbalanced by the overhead introduced by the time needed to go through the physical synthesis and implementation flow. Developed FPGA-based prototyping platform overcomes such limitations, enabling the use of FPGA-based prototyping for micro-architectural design space exploration of ASIP processors. In this approach, to increase the emulation speed-up, two different methods are proposed: the first is based on automatic instantiation of additional hardware modules, able to reconfigure at runtime the prototype, while the second leverages manipulation of application binary code, compiled for a custom VLIW ASIP architecture, that is transformed into code executable on a different configuration. This allows to prototype a whole set of ASIP solutions after one single FPGA implementation flow, mitigating the afore-mentioned overhead.A short overview on the tools used throughout the work will also be offered, covering basic aspects of Intel-Silicon Hive ASIP development toolchain, SESAME framework general description, along with a review of state-of-art simulation and prototyping techniques for complex multi-processor systems. Each proposed approach will be validated through a real-world use case, confirming the validity of this solution

    Application specific instruction set processor design for embedded application using the coware tool

    Get PDF
    An Application Specific Instruction Set Processor (ASIP) is widely used as a System on a Chip(SoC) Component. ASIPs possess an instruction set which is tai-lored to benefit a specific application. Such specialization allows ASIPs to serve as an intermediate between two dominant processor design styles- ASICs which has high processing abilities at the cost of limited programmability and Programmable solu-tions such as FPGAs that provide programming exibility at the cost of less energy eficiency. In this dissertation the goal is to design ASIP, keeping in mind a temper-ature sensor system. The platform used for processor design is LISA 2.0 description language and processor designing environment from CoWare. Coware processor de-signer allows processor architecture to be defined at an abstract level and automatic generation of chain of software tools like assembler, linker and simulator for functional verification followed by RTL level description. RTL level description is used to gen-erate synthesized report of the design using RTL compiler and finally the layout is created using Cadence encounter

    Custom-Instruction Synthesis for Extensible-Processor Platforms

    Full text link

    Combining FPGA prototyping and high-level simulation approaches for Design Space Exploration of MPSoCs

    Get PDF
    Modern embedded systems are parallel, component-based, heterogeneous and finely tuned on the basis of the workload that must be executed on them. To improve design reuse, Application Specific Instruction-set Processors (ASIPs) are often employed as building blocks in such systems, as a solution capable of satisfying the required functional and physical constraints (e.g. throughput, latency, power or energy consumption etc.), while providing, at the same time, high flexibility and adaptability. Composing a multi-processor architecture including ASIPs and mapping parallel applications onto it is a design activity that require an extensive Design Space Exploration process (DSE), to result in cost-effective systems. The work described here aims at defining novel methodologies for the application-driven customizations of such highly heterogeneous embedded systems. The issue is tackled at different levels, integrating different tools. High-level event-based simulation is a widely used technique that offers speed and flexibility as main points of strength, but needs, as a preliminary input and periodically during the iteration process, calibration data that must be acquired by means of more accurate evaluation methods. Typically, this calibration is performed using instruction-level cycleaccurate simulators that, however, turn out to be very slow, especially when complete multiprocessor systems must be evaluated or when the grain of the calibration is too fine, while FPGA approaches have shown to performbetter for this particular applications. FPGA-based emulation techniques have been proposed in the recent past as an alternative solution to the software-based simulation approach, but some further steps are needed before they can be effectively exploitedwithin architectural design space exploration. Firstly, some kind of technology-awareness must be introduced, to enable the translation of the emulation results into a pre-estimation of a prospective ASIC implementation of the design. Moreover, when performing architectural DSE, a significant number of different candidate design points has to be evaluated and compared. In this case, if no countermeasures are taken, the advantages achievable with FPGAs, in terms of emulation speed, are counterbalanced by the overhead introduced by the time needed to go through the physical synthesis and implementation flow. Developed FPGA-based prototyping platform overcomes such limitations, enabling the use of FPGA-based prototyping for micro-architectural design space exploration of ASIP processors. In this approach, to increase the emulation speed-up, two different methods are proposed: the first is based on automatic instantiation of additional hardware modules, able to reconfigure at runtime the prototype, while the second leverages manipulation of application binary code, compiled for a custom VLIW ASIP architecture, that is transformed into code executable on a different configuration. This allows to prototype a whole set of ASIP solutions after one single FPGA implementation flow, mitigating the afore-mentioned overhead.A short overview on the tools used throughout the work will also be offered, covering basic aspects of Intel-Silicon Hive ASIP development toolchain, SESAME framework general description, along with a review of state-of-art simulation and prototyping techniques for complex multi-processor systems. Each proposed approach will be validated through a real-world use case, confirming the validity of this solution
    corecore