2,336 research outputs found

    On the Design of Sidelink for Cellular V2X: A Literature Review and Outlook for Future

    Get PDF
    Connected and fully automated vehicles are expected to revolutionize our mobility in the near future on a global scale, by significantly improving road safety, traffic efficiency, and traveling experience. Enhanced vehicular applications, such as cooperative sensing and maneuvering or vehicle platooning, heavily rely on direct connectivity among vehicles, which is enabled by sidelink communications. In order to set the ground for the core contribution of this paper, we first analyze the main streams of the cellular-vehicle-to-everything (C-V2X) technology evolution within the Third Generation Partnership Project (3GPP), with focus on the sidelink air interface. Then, we provide a comprehensive survey of the related literature, which is classified and critically dissected, considering both the Long-Term Evolution-based solutions and the 5G New Radio-based latest advancements that promise substantial improvements in terms of latency and reliability. The wide literature review is used as a basis to finally identify further challenges and perspectives, which may shape the C-V2X sidelink developments in the next-generation vehicles beyond 5G

    Joint admission and association in vehicular networks

    Get PDF
    Abstract. To support vehicle to everything (V2X) communication which is an integral part of intelligent transportation systems (ITS), fifth generation (5G) communication systems will need to employ diverse range of technologies, which will ultimately lead to automated driving, improved traffic safety, improved traffic efficiency and infotainment.~V2X is considered as one of the most challenging applications of 5G, because it requires ultra reliable and low latency communication (URLLC) for safety critical applications and high data rates in many scenarios under mobility. Vehicles which can communicate with a base station or road side unit (RSU) are primary vehicles, which can act as relays to secondary vehicles which are out of coverage from the network. Therefore vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication are employed to provide coverage for out of coverage vehicles. In this study joint problem of admission control for primary vehicles and user association for secondary vehicles in a singe cell downlink vehicular network is considered. The objective is to maximize the number of admitted primary vehicles, while associating all secondary vehicles. We consider the underlying communication system is based on millimeter wave communication at 60 GHz and we cast the optimization problem as an ℓ₀ minimization problem. This problem is known to be combinatorial and NP-hard. Hence, we propose a sub optimal, two stage algorithm to solve it. We compare the performance of proposed algorithm against the exhaustive search algorithm. From simulation results it can be observed, although the proposed algorithm is a sub optimal algorithm it gives optimal performance with improved efficiency. Hence, the proposed algorithm is able to determine the optimal association for vehicles which are out of coverage and optimal admission for vehicles which are in coverage

    Ultra reliable 5G mmWAve communications for V2X scénarios

    Get PDF
    The Automotive Vehicle to Everything (V2X)technology is one of the most important innovations that theworld will see in the years to come. This paradigm will supportmany advanced services such as object detection and recognition,risk identification and avoidance, car platooning. These serviceswill require several keys among them, the high data transmissionrates of the order of gigabits per driving hour, and highreliability, and high speed for transition of data, which may beavailable through the capabilities of the new architecture for thenext generation of wireless communications 5G and the widebandwidth of the millimeter wave (mm Wave) which is deemed tobe a real solution for the V2X requirements. However, thechallenges related to the reliability/latency and security of theV2X system and nature of mm wave communication requireseveral solutions either for natural challenges such as High pathloss propagation, penetrating disability or for the technicalchallenges. This paper provides an overview of the V2Xcommunication technology investigates the V2X challengesincluding the mm wave and and finally presents some efficientsolutions

    An overview of millimeter waves challenges in 5G vehicle-to-everything networks

    Get PDF
    International audienceThe Automotive Vehicle to Everything (V2X) technology is one of the most important innovations that the world will see in the years to come. This paradigm will support many advanced services such as object detection and recognition, risk identification and avoidance, car platooning. These services will require several keys among them, the high data transmission rates of the order of gigabits per driving hour, and high reliability, and high speed for transition of data, which may be available through the capabilities of the new architecture for the next generation of wireless communications 5G and the wide bandwidth of the millimeter wave (mm Wave) which is deemed to be a real solution for the V2X requirements. However, the challenges related to the reliability/latency and security of the V2X system and nature of mm wave communication require several solutions either for natural challenges such as High path loss propagation, penetrating disability or for the technical challenges. This paper provides an overview of the V2X communication technology investigates the V2X challenges including the mm wave and and finally presents some efficient solutions

    Pay as You Go: A Generic Crypto Tolling Architecture

    Full text link
    The imminent pervasive adoption of vehicular communication, based on dedicated short-range technology (ETSI ITS G5 or IEEE WAVE), 5G, or both, will foster a richer service ecosystem for vehicular applications. The appearance of new cryptography based solutions envisaging digital identity and currency exchange are set to stem new approaches for existing and future challenges. This paper presents a novel tolling architecture that harnesses the availability of 5G C-V2X connectivity for open road tolling using smartphones, IOTA as the digital currency and Hyperledger Indy for identity validation. An experimental feasibility analysis is used to validate the proposed architecture for secure, private and convenient electronic toll payment

    DSRC Versus LTE-V2X: Empirical Performance Analysis of Direct Vehicular Communication Technologies

    Get PDF
    Vehicle-to-Vehicle (V2V) communication systems have an eminence potential to improve road safety and optimize traffic flow by broadcasting Basic Safety Messages (BSMs). Dedicated Short-Range Communication (DSRC) and LTE Vehicle-to-Everything (V2X) are two candidate technologies to enable V2V communication. DSRC relies on the IEEE 802.11p standard for its PHY and MAC layer while LTE-V2X is based on 3GPP’s Release 14 and operates in a distributed manner in the absence of cellular infrastructure. There has been considerable debate over the relative advantages and disadvantages of DSRC and LTE-V2X, aiming to answer the fundamental question of which technology is most effective in real-world scenarios for various road safety and traffic efficiency applications. In this paper, we present a comprehensive survey of these two technologies (i.e., DSRC and LTE-V2X) and related works. More specifically, we study the PHY and MAC layer of both technologies in the survey study and compare the PHY layer performance using a variety of field tests. First, we provide a summary of each technology and highlight the limitations of each in supporting V2X applications. Then, we examine their performance based on different metrics

    Radio resource management for V2X in cellular systems

    Get PDF
    The thesis focuses on the provision of cellular vehicle-to-everything (V2X) communications, which have attracted great interest for 5G due to the potential of improving traffic safety and enabling new services related to intelligent transportation systems. These types of services have strict requirements on reliability, access availability, and end-to-end (E2E) latency. V2X requires advanced network management techniques that must be developed based on the characteristics of the networks and traffic requirements. The integration of the Sidelink (SL), which enables the direct communication between vehicles (i.e., vehicle-to-vehicle (V2V)) without passing through the base station into cellular networks is a promising solution for enhancing the performance of V2X in cellular systems. In this thesis, we addressed some of the challenges arising from the integration of V2V communication in cellular systems and validated the potential of this technology by providing appropriate resource management solutions. Our main contributions have been in the context of radio access network slicing, mode selection, and radio resource allocation mechanisms. With regard to the first research direction that focuses on the RAN slicing management, a novel strategy based on offline Q-learning and softmax decision-making has been proposed as an enhanced solution to determine the adequate split of resources between a slice for eMBB communications and a slice for V2X. Then, starting from the outcome of the off-line Q-learning algorithm, a low-complexity heuristic strategy has been proposed to achieve further improvements in the use of resources. The proposed solution has been compared against proportional and fixed reference schemes. The extensive performance assessment have revealed the ability of the proposed algorithms to improve network performance compared to the reference schemes, especially in terms of resource utilization, throughput, latency and outage probability. Regarding the second research direction that focuses on the mode selection, two different mode selection solutions referred to as MSSB and MS-RBRS strategies have been proposed for V2V communication over a cellular network. The MSSB strategy decides when it is appropriate to use one or the other mode, i.e. sidelink or cellular, for the involved vehicles, taking into account the quality of the links between V2V users, the available resources, and the network traffic load situation. Moreover, the MS-RBRS strategy not only selects the appropriate mode of operation but also decides efficiently the amount of resources needed by V2V links in each mode and allows reusing RBs between different SL users while guaranteeing the minimum signal to interference requirements. The conducted simulations have revealed that the MS-RBRS and MSSB strategies are beneficial in terms of throughput, radio resource utilization, outage probability and latency under different offered loads comparing to the reference scheme. Last, we have focused on the resource allocation problem including jointly mode selection and radio resource scheduling. For the mode selection, a novel mode selection has been presented to decide when it is appropriate to select sidelink mode and use a distributed approach for radio resource allocation or cellular mode and use a centralized radio resource allocation. It takes into account three aspects: the quality of the links between V2V users, the available resources, and the latency. As for the radio resource allocation, the proposed approach includes a distributed radio resource allocation for sidelink mode and a centralized radio resource allocation for cellular mode. The proposed strategy supports dynamic assignments by allowing transmission over mini-slots. A simulation-based analysis has shown that the proposed strategies improved the network performance in terms of latency of V2V services, packet success rate and resource utilization under different network loads.La tesis se centra en la provisión de comunicaciones para vehículos sistemas celulares (V2X: Vehicle to Everything), que han atraído un gran interés en el contexto de 5G debido a su potencial de mejorar la seguridad del tráfico y habilitar nuevos servicios relacionados con los sistemas inteligentes de transporte. Estos tipos de servicios tienen requisitos estrictos en términos fiabilidad, disponibilidad de acceso y latencia de extremo a extremo (E2E). Para ello, V2X requiere técnicas avanzadas de gestión de red que deben desarrollarse en función de las características de las redes y los requisitos de tráfico. La integración del Sidelink (SL), que permite la comunicación directa entre vehículos (es decir, vehículo a vehículo (V2V)) sin pasar por la estación base de las redes celulares, es una solución prometedora para mejorar el rendimiento de V2X en el sistema celular. En esta tesis, abordamos algunos de los desafíos derivados de la integración de la comunicación V2V en los sistemas celulares y validamos el potencial de esta tecnología al proporcionar soluciones de gestión de recursos adecuadas. Nuestras principales contribuciones han sido en el contexto del denominado "slicing" de redes de acceso radio, la selección de modo y los mecanismos de asignación de recursos radio. Respecto a la primera dirección de investigación que se centra en la gestión del RAN slicing, se ha propuesto una estrategia novedosa basada en Q-learning y toma de decisiones softmax como una solución para determinar la división adecuada de recursos entre un slice para comunicaciones eMBB y un slice para V2X. Luego, a partir del resultado del algoritmo de Q-learning, se ha propuesto una estrategia heurística de baja complejidad para lograr mejoras adicionales en el uso de los recursos. La solución propuesta se ha comparado con esquemas de referencia proporcionales y fijos. La evaluación ha revelado la capacidad de los algoritmos propuestos para mejorar el rendimiento de la red en comparación con los esquemas de referencia, especialmente en términos de utilización de recursos, rendimiento, y latencia . Con respecto a la segunda dirección de investigación que se centra en la selección de modo, se han propuesto dos soluciones de diferentes llamadas estrategias MSSB y MS-RBRS para la comunicación V2V a través de una red celular. La estrategia MSSB decide cuándo es apropiado usar el modo SL o el modo celular, para los vehículos involucrados, teniendo en cuenta la calidad de los enlaces entre los usuarios de V2V, los recursos disponibles y la situación de carga de tráfico de la red. Además, la estrategia MS-RBRS no solo selecciona el modo de operación apropiado, sino que también decide eficientemente la cantidad de recursos que los enlaces V2V necesitan en cada modo, y permite que los RB se reutilicen entre diferentes usuarios de SL al tiempo que garantiza requisitos mínimos de señal a interferencia. Se ha presentado un análisis basado en simulación para evaluar el desempeño de las estrategias propuestas. Finalmente, nos hemos centrado en el problema conjunto de la selección de modo y la asignación de recursos de radio. Para la selección de modo, se ha presentado una nueva estrategia para decidir cuándo es apropiado seleccionar el modo SL y usar un enfoque distribuido para la asignación de recursos de radio o el modo celular y usar la asignación de recursos de radio centralizada. Tiene en cuenta tres aspectos: la calidad de los enlaces entre los usuarios de V2V, los recursos disponibles y la latencia. En términos de asignación de recursos de radio, el enfoque propuesto incluye una asignación de recursos de radio distribuida para el modo SL y una asignación de recursos de radio centralizada para el modo celular. La estrategia propuesta admite asignaciones dinámicas al permitir la transmisión a través de mini-slots. Los resultados muestran las mejoras en términos de latencia, tasa de recepción y la utilización de recursos bajo diferentes cargas de red.Postprint (published version
    corecore