1,493 research outputs found

    Sensing as a service: A cloud computing system for mobile phone sensing

    Get PDF
    Sensors on (or attached to) mobile phones can enable attractive sensing applications in different domains such as environmental monitoring, social networking, healthcare, etc. We introduce a new concept, Sensing-as-a-Service (S2aaS), i.e., providing sensing services using mobile phones via a cloud computing system. An S2aaS cloud should meet the following requirements: 1) It must be able to support various mobile phone sensing applications on different smartphone platforms. 2) It must be energy-efficient. 3) It must have effective incentive mechanisms that can be used to attract mobile users to participate in sensing activities. In this paper, we identify unique challenges of designing and implementing an S2aaS cloud, review existing systems and methods, present viable solutions, and point out future research directions

    Let Opportunistic Crowdsensors Work Together for Resource-efficient, Quality-aware Observations

    Get PDF
    International audienceOpportunistic crowdsensing empowers citizens carrying hand-held devices to sense physical phenomena of common interest at a large and fine-grained scale without requiring the citizens' active involvement. However, the resulting uncontrolled collection and upload of the massive amount of contributed raw data incur significant resource consumption, from the end device to the server, as well as challenge the quality of the collected observations. This paper tackles both challenges raised by opportunistic crowdsensing, that is, enabling the resource-efficient gathering of relevant observations. To achieve so, we introduce the BeTogether middleware fostering context-aware, collaborative crowdsensing at the edge so that co-located crowdsensors operating in the same context, group together to share the work load in a cost- and quality-effective way. We evaluate the proposed solution using an implementation-driven evaluation that leverages a dataset embedding nearly 1 million entries contributed by 550 crowdsensors over a year. Results show that BeTogether increases the quality of the collected data while reducing the overall resource cost compared to the cloud-centric approach

    Mobile crowd sensing architectural frameworks: A comprehensive survey

    Get PDF
    Mobile Crowd Sensing has emerged as a new sensing paradigm, efficiently exploiting human intelligence and mobility in conjunction with advanced capabilities and proliferation of mobile devices. In order for MCS applications to reach their full potentials, a number of research challenges should be sufficiently addressed. The aim of this paper is to survey representative mobile crowd sensing applications and frameworks proposed in related research literature, analyze their distinct features and discuss on their relative merits and weaknesses, highlighting also potential solutions, in order to take a step closer to the definition of a unified MCS architectural framework

    Managing ubiquitous eco cities: the role of urban telecommunication infrastructure networks and convergence technologies

    Get PDF
    A successful urban management system for a Ubiquitous Eco City requires an integrated approach. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision making mechanism and necessary infrastructure and technologies. Rapidly developing information and telecommunication technologies and their platforms in the late 20th Century improves urban management and enhances the quality of life and place. Telecommunication technologies provide an important base for monitoring and managing activities over wired, wireless or fibre-optic networks. Particularly technology convergence creates new ways in which the information and telecommunication technologies are used. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices such as mobile phones and provides opportunities in the management of Ubiquitous Eco Cities. This paper discusses the recent developments in telecommunication networks and trends in convergence technologies and their implications on the management of Ubiquitous Eco Cities and how this technological shift is likely to be beneficial in improving the quality of life and place. The paper also introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for Ubiquitous Eco Cities

    Application acceleration for wireless and mobile data networks

    Get PDF
    This work studies application acceleration for wireless and mobile data networks. The problem of accelerating application can be addressed along multiple dimensions. The first dimension is advanced network protocol design, i.e., optimizing underlying network protocols, particulary transport layer protocol and link layer protocol. Despite advanced network protocol design, in this work we observe that certain application behaviors can fundamentally limit the performance achievable when operating over wireless and mobile data networks. The performance difference is caused by the complex application behaviors of these non-FTP applications. Explicitly dealing with application behaviors can improve application performance for new environments. Along this overcoming application behavior dimension, we accelerate applications by studying specific types of applications including Client-server, Peer-to-peer and Location-based applications. In exploring along this dimension, we identify a set of application behaviors that significantly affect application performance. To accommodate these application behaviors, we firstly extract general design principles that can apply to any applications whenever possible. These design principles can also be integrated into new application designs. We also consider specific applications by applying these design principles and build prototypes to demonstrate the effectiveness of the solutions. In the context of application acceleration, even though all the challenges belong to the two aforementioned dimensions of advanced network protocol design and overcoming application behavior are addressed, application performance can still be limited by the underlying network capability, particularly physical bandwidth. In this work, we study the possibility of speeding up data delivery by eliminating traffic redundancy present in application traffics. Specifically, we first study the traffic redundancy along multiple dimensions using traces obtained from multiple real wireless network deployments. Based on the insights obtained from the analysis, we propose Wireless Memory (WM), a two-ended AP-client solution to effectively exploit traffic redundancy in wireless and mobile environments. Application acceleration can be achieved along two other dimensions: network provision ing and quality of service (QoS). Network provisioning allocates network resources such as physical bandwidth or wireless spectrum, while QoS provides different priority to different applications, users, or data flows. These two dimensions have their respective limitations in the context of application acceleration. In this work, we focus on the two dimensions of overcoming application behavior and Eliminating traffic redundancy to improve application performance. The contribution of this work is as follows. First, we study the problem of application acceleration for wireless and mobile data networks, and we characterize the dimensions along which to address the problem. Second, we identify that application behaviors can significantly affect application performance, and we propose a set of design principles to deal with the behaviors. We also build prototypes to conduct system research. Third, we consider traffic redundancy elimination and propose a wireless memory approach.Ph.D.Committee Chair: Sivakumar, Raghupathy; Committee Member: Ammar, Mostafa; Committee Member: Fekri, Faramarz; Committee Member: Ji, Chuanyi; Committee Member: Ramachandran, Umakishor

    LPcomS: Towards a Low Power Wireless Smart-Shoe System for Gait Analysis in People with Disabilities

    Get PDF
    Gait analysis using smart sensor technology is an important medical diagnostic process and has many applications in rehabilitation, therapy and exercise training. In this thesis, we present a low power wireless smart-shoe system (LPcomS) to analyze different functional postures and characteristics of gait while walking. We have designed and implemented a smart-shoe with a Bluetooth communication module to unobtrusively collect data using smartphone in any environment. With the design of a shoe insole equipped with four pressure sensors, the foot pressure is been collected, and those data are used to obtain accurate gait pattern of a patient. With our proposed portable sensing system and effective low power communication algorithm, the smart-shoe system enables detailed gait analysis. Experimentation and verification is conducted on multiple subjects with different gait including free gait. The sensor outputs, with gait analysis acquired from the experiment, are presented in this thesis

    From Personalized Medicine to Population Health: A Survey of mHealth Sensing Techniques

    Full text link
    Mobile Sensing Apps have been widely used as a practical approach to collect behavioral and health-related information from individuals and provide timely intervention to promote health and well-beings, such as mental health and chronic cares. As the objectives of mobile sensing could be either \emph{(a) personalized medicine for individuals} or \emph{(b) public health for populations}, in this work we review the design of these mobile sensing apps, and propose to categorize the design of these apps/systems in two paradigms -- \emph{(i) Personal Sensing} and \emph{(ii) Crowd Sensing} paradigms. While both sensing paradigms might incorporate with common ubiquitous sensing technologies, such as wearable sensors, mobility monitoring, mobile data offloading, and/or cloud-based data analytics to collect and process sensing data from individuals, we present a novel taxonomy system with two major components that can specify and classify apps/systems from aspects of the life-cycle of mHealth Sensing: \emph{(1) Sensing Task Creation \& Participation}, \emph{(2) Health Surveillance \& Data Collection}, and \emph{(3) Data Analysis \& Knowledge Discovery}. With respect to different goals of the two paradigms, this work systematically reviews this field, and summarizes the design of typical apps/systems in the view of the configurations and interactions between these two components. In addition to summarization, the proposed taxonomy system also helps figure out the potential directions of mobile sensing for health from both personalized medicines and population health perspectives.Comment: Submitted to a journal for revie

    Scalable crowd-sourcing of video from mobile devices

    Full text link

    Efficient energy-constrained distribution of context in mobile systems

    Get PDF
    The recent improvements in smartphones nowadays offer a widespread application of sensor-based services. Each mobile phone is equipped with several sensors like a GPS module, a gyroscope, or a high-resolution camera. As a result of this sensor integration, a whole new way of usage is opened up for the end-user, like a location-based search or people-centric sensing. The main drawback related to a smartphone is an overall high energy consumption, combined with a limited energy capacity. Due to this fact, a continuous and fine grained sensing of the user's context is not possible, as it utilizes at least one acceleration sensor. Furthermore, the captured data is transmitted via a (mobile) communication infrastructure to post the context on the Internet. Both drain the battery very quickly. For that reason, an efficient energy-constrained distribution is required to minimize the update occurrence of a producer, while simultaneously maximizing the accuracy of a consumer. The primary issues to be addressed include a modeling of user behavior as well as a determination of optimal points in time for an update. Therefore, a probabilistic approach is used to forecast the user's context pattern. The prediction is based upon a Markov chain and enables the extraction of meaningful information. The proper times for an update are determined with the help of a constrained optimization problem. Different methods from mathematical optimization are applied like linear and nonlinear programming or a constrained Markov decision process, which obtain an update policy. For a better comparison of the weaknesses and strengths related to the developed methods, dynamic programming is used to achieve the optimal points in time for an update. The evaluation upon a real trace shows that an accuracy gain of more than 30% is achieved by sending the equal amount of messages

    Let Opportunistic Crowdsensors Work Together for Resource-efficient, Quality-aware Observations

    Get PDF
    International audienceOpportunistic crowdsensing empowers citizens carrying hand-held devices to sense physical phenomena of common interest at a large and fine-grained scale without requiring the citizens' active involvement. However, the resulting uncontrolled collection and upload of the massive amount of contributed raw data incur significant resource consumption, from the end device to the server, as well as challenge the quality of the collected observations. This paper tackles both challenges raised by opportunistic crowdsensing, that is, enabling the resource-efficient gathering of relevant observations. To achieve so, we introduce the BeTogether middleware fostering context-aware, collaborative crowdsensing at the edge so that co-located crowdsensors operating in the same context, group together to share the work load in a cost- and quality-effective way. We evaluate the proposed solution using an implementation-driven evaluation that leverages a dataset embedding nearly 1 million entries contributed by 550 crowdsensors over a year. Results show that BeTogether increases the quality of the collected data while reducing the overall resource cost compared to the cloud-centric approach
    corecore