123,834 research outputs found

    DETC2006-99149 AN AGENT-BASED APPROACH TO COLLABORATIVE PRODUCT DESIGN

    Get PDF
    ABSTRACT The growth of computer science and technology has brought new opportunities for multidisciplinary designers and engineers to collaborate with each other in a concurrent and coordinated manner. The development of computational agents with unified data structures and software protocols can contribute to the establishment of a new way of working in collaborative design, which is increasingly becoming an international practice. In this paper, we first propose a computational model of collaborative product design management aiming to improve the efficiency and effectiveness of the cooperation and coordination among participating disciplines. Then, we present a new framework of collaborative design which adopts an agent-based approach and relocates designers, managers, systems, and supporting agents in a unified knowledge representation scheme for product design. An agent-based system is now being implemented and the design of a set of dinning table and chairs is chosen to demonstrate how the system can help designers in the management and coordination of the collaborative product design process. INTORDUCTION Increasing product complexity, explosive global competition, and rapidly changing customer's demands are forcing product manufacturers to improve the efficiency of design decision-making and shrink design cycle times. Advances in the computer science and technology have opened new opportunities for multidisciplinary designers and engineers to collaborative with each other more efficiently and effectively. Collaborative design can create added value in the design and production process by bringing the benefit of team work and cooperation in a concurrent and coordinated manner. Also, it help reduce the loss of efficiency resulted from potential conflicts and misunderstandings among team members. However, the difficulties arising from the requirements for design coordination mixed with differences among heterogeneous system architectures and information structures tend to undermine the effectiveness and the success of collaborative design among multidisciplinary designers. Recently, agent technology has been recognized by more and more researchers as a promising approach to analyzing, designing, and implementing industrial distributed systems. An intelligent agent consists of self-contained knowledge-based systems capable of perceiving, reasoning, adapting, learning, cooperating, and delegating in a dynamic environment to tackle specialist problems. The way in which intelligent software agents residing in a multi-agent system interact and cooperate with one another to achieve a common goal is similar to the way that human designers collaborate with each other to carry out a product design project. Thus, we believe that a collaborative product design environment implemented by taking an agentbased approach will be capable of assisting human designers or design teams effectively and efficiently in collaborative product design. In this paper, based on the analysis of the characteristics of a collaborative design process, we first propose a computational model of collaborative product design management to improve

    Linking design and manufacturing domains via web-based and enterprise integration technologies

    Get PDF
    The manufacturing industry faces many challenges such as reducing time-to-market and cutting costs. In order to meet these increasing demands, effective methods are need to support the early product development stages by bridging the gap of communicating early design ideas and the evaluation of manufacturing performance. This paper introduces methods of linking design and manufacturing domains using disparate technologies. The combined technologies include knowledge management supporting for product lifecycle management (PLM) systems, enterprise resource planning (ERP) systems, aggregate process planning systems, workflow management and data exchange formats. A case study has been used to demonstrate the use of these technologies, illustrated by adding manufacturing knowledge to generate alternative early process plan which are in turn used by an ERP system to obtain and optimise a rough-cut capacity plan

    Coordination approaches and systems - part I : a strategic perspective

    Get PDF
    This is the first part of a two-part paper presenting a fundamental review and summary of research of design coordination and cooperation technologies. The theme of this review is aimed at the research conducted within the decision management aspect of design coordination. The focus is therefore on the strategies involved in making decisions and how these strategies are used to satisfy design requirements. The paper reviews research within collaborative and coordinated design, project and workflow management, and, task and organization models. The research reviewed has attempted to identify fundamental coordination mechanisms from different domains, however it is concluded that domain independent mechanisms need to be augmented with domain specific mechanisms to facilitate coordination. Part II is a review of design coordination from an operational perspective

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    Design of an innovation platform for manufacturing SMES

    Get PDF
    This paper reports on the conception of a collaborative, internet-based innovation platform with semantic capabilities, which implements a new methodology for the adoption of a systematic innovation process in globally-acting networked SMEs. The main objective of the innovation platform is to stimulate the generation of ideas, the selection of good ideas and their ultimate implementation. The platform will support SMEs to manage and implement the complex innovation processes arisen in a networked environment, taking into account their internal and external links, by enabling an open multi-agent focused innovation system, facilitating customer, provider, supplier and employee- focused innovation. The solution is specifically focused on the needs of manufacturing SMEs and will observe product, process and management innovation. The paper presents the key elements of the innovation model and makes references to a novel approach concerning the development of a robust and flexible Central Knowledge Repository for the innovation platform

    Proceedings of the ECSCW'95 Workshop on the Role of Version Control in CSCW Applications

    Full text link
    The workshop entitled "The Role of Version Control in Computer Supported Cooperative Work Applications" was held on September 10, 1995 in Stockholm, Sweden in conjunction with the ECSCW'95 conference. Version control, the ability to manage relationships between successive instances of artifacts, organize those instances into meaningful structures, and support navigation and other operations on those structures, is an important problem in CSCW applications. It has long been recognized as a critical issue for inherently cooperative tasks such as software engineering, technical documentation, and authoring. The primary challenge for versioning in these areas is to support opportunistic, open-ended design processes requiring the preservation of historical perspectives in the design process, the reuse of previous designs, and the exploitation of alternative designs. The primary goal of this workshop was to bring together a diverse group of individuals interested in examining the role of versioning in Computer Supported Cooperative Work. Participation was encouraged from members of the research community currently investigating the versioning process in CSCW as well as application designers and developers who are familiar with the real-world requirements for versioning in CSCW. Both groups were represented at the workshop resulting in an exchange of ideas and information that helped to familiarize developers with the most recent research results in the area, and to provide researchers with an updated view of the needs and challenges faced by application developers. In preparing for this workshop, the organizers were able to build upon the results of their previous one entitled "The Workshop on Versioning in Hypertext" held in conjunction with the ECHT'94 conference. The following section of this report contains a summary in which the workshop organizers report the major results of the workshop. The summary is followed by a section that contains the position papers that were accepted to the workshop. The position papers provide more detailed information describing recent research efforts of the workshop participants as well as current challenges that are being encountered in the development of CSCW applications. A list of workshop participants is provided at the end of the report. The organizers would like to thank all of the participants for their contributions which were, of course, vital to the success of the workshop. We would also like to thank the ECSCW'95 conference organizers for providing a forum in which this workshop was possible
    corecore