22,341 research outputs found

    MORA - an architecture and programming model for a resource efficient coarse grained reconfigurable processor

    Get PDF
    This paper presents an architecture and implementation details for MORA, a novel coarse grained reconfigurable processor for accelerating media processing applications. The MORA architecture involves a 2-D array of several such processors, to deliver low cost, high throughput performance in media processing applications. A distinguishing feature of the MORA architecture is the co-design of hardware architecture and low-level programming language throughout the design cycle. The implementation details for the single MORA processor, and benchmark evaluation using a cycle accurate simulator are presented

    On the suitability and development of layout templates for analog layout reuse and layout-aware synthesis

    Get PDF
    Accelerating the synthesis of increasingly complex analog integrated circuits is key to bridge the widening gap between what we can integrate and what we can design while meeting ever-tightening time-to-market constraints. It is a well-known fact in the semiconductor industry that such goal can only be attained by means of adequate CAD methodologies, techniques, and accompanying tools. This is particularly important in analog physical synthesis (a.k.a. layout generation), where large sensitivities of the circuit performances to the many subtle details of layout implementation (device matching, loading and coupling effects, reliability, and area features are of utmost importance to analog designers), render complete automation a truly challenging task. To approach the problem, two directions have been traditionally considered, knowledge-based and optimization-based, both with their own pros and cons. Besides, recently reported solutions oriented to speed up the overall design flow by means of reuse-based practices or by cutting off time-consuming, error-prone spins between electrical and layout synthesis (a technique known as layout-aware synthesis), rely on a outstandingly rapid yet efficient layout generation method. This paper analyses the suitability of procedural layout generation based on templates (a knowledge-based approach) by examining the requirements that both layout reuse and layout-aware solutions impose, and how layout templates face them. The ability to capture the know-how of experienced layout designers and the turnaround times for layout instancing are considered main comparative aspects in relation to other layout generation approaches. A discussion on the benefit-cost trade-off of using layout templates is also included. In addition to this analysis, the paper delves deeper into systematic techniques to develop fully reusable layout templates for analog circuits, either for a change of the circuit sizing (i.e., layout retargeting) or a change of the fabrication process (i.e., layout migration). Several examples implemented with the Cadence's Virtuoso tool suite are provided as demonstration of the paper's contributions.Ministerio de Educación y Ciencia TEC2004-0175

    Modular Acquisition and Stimulation System for Timestamp-Driven Neuroscience Experiments

    Full text link
    Dedicated systems are fundamental for neuroscience experimental protocols that require timing determinism and synchronous stimuli generation. We developed a data acquisition and stimuli generator system for neuroscience research, optimized for recording timestamps from up to 6 spiking neurons and entirely specified in a high-level Hardware Description Language (HDL). Despite the logic complexity penalty of synthesizing from such a language, it was possible to implement our design in a low-cost small reconfigurable device. Under a modular framework, we explored two different memory arbitration schemes for our system, evaluating both their logic element usage and resilience to input activity bursts. One of them was designed with a decoupled and latency insensitive approach, allowing for easier code reuse, while the other adopted a centralized scheme, constructed specifically for our application. The usage of a high-level HDL allowed straightforward and stepwise code modifications to transform one architecture into the other. The achieved modularity is very useful for rapidly prototyping novel electronic instrumentation systems tailored to scientific research.Comment: Preprint submitted to ARC 2015. Extended: 16 pages, 10 figures. The final publication is available at link.springer.co

    The S2 VLBI Correlator: A Correlator for Space VLBI and Geodetic Signal Processing

    Get PDF
    We describe the design of a correlator system for ground and space-based VLBI. The correlator contains unique signal processing functions: flexible LO frequency switching for bandwidth synthesis; 1 ms dump intervals, multi-rate digital signal-processing techniques to allow correlation of signals at different sample rates; and a digital filter for very high resolution cross-power spectra. It also includes autocorrelation, tone extraction, pulsar gating, signal-statistics accumulation.Comment: 44 pages, 13 figure

    SIRENA: A CAD environment for behavioural modelling and simulation of VLSI cellular neural network chips

    Get PDF
    This paper presents SIRENA, a CAD environment for the simulation and modelling of mixed-signal VLSI parallel processing chips based on cellular neural networks. SIRENA includes capabilities for: (a) the description of nominal and non-ideal operation of CNN analogue circuitry at the behavioural level; (b) performing realistic simulations of the transient evolution of physical CNNs including deviations due to second-order effects of the hardware; and, (c) evaluating sensitivity figures, and realize noise and Monte Carlo simulations in the time domain. These capabilities portray SIRENA as better suited for CNN chip development than algorithmic simulation packages (such as OpenSimulator, Sesame) or conventional neural networks simulators (RCS, GENESIS, SFINX), which are not oriented to the evaluation of hardware non-idealities. As compared to conventional electrical simulators (such as HSPICE or ELDO-FAS), SIRENA provides easier modelling of the hardware parasitics, a significant reduction in computation time, and similar accuracy levels. Consequently, iteration during the design procedure becomes possible, supporting decision making regarding design strategies and dimensioning. SIRENA has been developed using object-oriented programming techniques in C, and currently runs under the UNIX operating system and X-Windows framework. It employs a dedicated high-level hardware description language: DECEL, fitted to the description of non-idealities arising in CNN hardware. This language has been developed aiming generality, in the sense of making no restrictions on the network models that can be implemented. SIRENA is highly modular and composed of independent tools. This simplifies future expansions and improvements.Comisión Interministerial de Ciencia y Tecnología TIC96-1392-C02-0

    Modeling and Analysis of Power Processing Systems

    Get PDF
    The feasibility of formulating a methodology for the modeling and analysis of aerospace electrical power processing systems is investigated. It is shown that a digital computer may be used in an interactive mode for the design, modeling, analysis, and comparison of power processing systems
    corecore