19,019 research outputs found

    Enabling collaboration in virtual reality navigators

    Get PDF
    In this paper we characterize a feature superset for Collaborative Virtual Reality Environments (CVRE), and derive a component framework to transform stand-alone VR navigators into full-fledged multithreaded collaborative environments. The contributions of our approach rely on a cost-effective and extensible technique for loading software components into separate POSIX threads for rendering, user interaction and network communications, and adding a top layer for managing session collaboration. The framework recasts a VR navigator under a distributed peer-to-peer topology for scene and object sharing, using callback hooks for broadcasting remote events and multicamera perspective sharing with avatar interaction. We validate the framework by applying it to our own ALICE VR Navigator. Experimental results show that our approach has good performance in the collaborative inspection of complex models.Postprint (published version

    Object-oriented Tools for Distributed Computing

    Get PDF
    Distributed computing systems are proliferating, owing to the availability of powerful, affordable microcomputers and inexpensive communication networks. A critical problem in developing such systems is getting application programs to interact with one another across a computer network. Remote interprogram connectivity is particularly challenging across heterogeneous environments, where applications run on different kinds of computers and operating systems. NetWorks! (trademark) is an innovative software product that provides an object-oriented messaging solution to these problems. This paper describes the design and functionality of NetWorks! and illustrates how it is being used to build complex distributed applications for NASA and in the commercial sector

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    Kompics: a message-passing component model for building distributed systems

    Get PDF
    The Kompics component model and programming framework was designedto simplify the development of increasingly complex distributed systems. Systems built with Kompics leverage multi-core machines out of the box and they can be dynamically reconfigured to support hot software upgrades. A simulation framework enables deterministic debugging and reproducible performance evaluation of unmodified Kompics distributed systems. We describe the component model and show how to program and compose event-based distributed systems. We present the architectural patterns and abstractions that Kompics facilitates and we highlight a case study of a complex distributed middleware that we have built with Kompics. We show how our approach enables systematic development and evaluation of large-scale and dynamic distributed systems

    Environments to support collaborative software engineering

    Get PDF
    With increasing globalisation of software production, widespread use of software components, and the need to maintain software systems over long periods of time, there has been a recognition that better support for collaborative working is needed by software engineers. In this paper, two approaches to developing improved system support for collaborative software engineering are described: GENESIS and OPHELIA. As both projects are moving towards industrial trials and eventual publicreleases of their systems, this exercise of comparing and contrasting our approaches has provided the basis for future collaboration between our projects particularly in carrying out comparative studies of our approaches in practical use

    On the Notion of Abstract Platform in MDA Development

    Get PDF
    Although platform-independence is a central property in MDA models, the study of platform-independence has been largely overlooked in MDA. As a consequence, there is a lack of guidelines to select abstraction criteria and modelling concepts for platform-independent design. In addition, there is little methodological support to distinguish between platform-independent and platform-specific concerns, which could be detrimental to the beneficial exploitation of the PIM-PSM separation-of-concerns adopted by MDA. This work is an attempt towards clarifying the notion of platform-independent modelling in MDA development. We argue that each level of platform-independence must be accompanied by the identification of an abstract platform. An abstract platform is determined by the platform characteristics that are relevant for applications at a certain level of platform-independence, and must be established by balancing various design goals. We present some methodological principles for abstract platform design, which forms a basis for defining requirements for design languages intended to support platform-independent design. Since our methodological framework is based on the notion of abstract platform, we pay particular attention to the definition of abstract platforms and the language requirements to specify abstract platforms. We discuss how the concept of abstract platform relates to UML

    A Methodology for Engineering Collaborative and ad-hoc Mobile Applications using SyD Middleware

    Get PDF
    Today’s web applications are more collaborative and utilize standard and ubiquitous Internet protocols. We have earlier developed System on Mobile Devices (SyD) middleware to rapidly develop and deploy collaborative applications over heterogeneous and possibly mobile devices hosting web objects. In this paper, we present the software engineering methodology for developing SyD-enabled web applications and illustrate it through a case study on two representative applications: (i) a calendar of meeting application, which is a collaborative application and (ii) a travel application which is an ad-hoc collaborative application. SyD-enabled web objects allow us to create a collaborative application rapidly with limited coding effort. In this case study, the modular software architecture allowed us to hide the inherent heterogeneity among devices, data stores, and networks by presenting a uniform and persistent object view of mobile objects interacting through XML/SOAP requests and responses. The performance results we obtained show that the application scales well as we increase the group size and adapts well within the constraints of mobile devices
    • 

    corecore