9,701 research outputs found

    Hijacker: Efficient static software instrumentation with applications in high performance computing: Poster paper

    Get PDF
    Static Binary Instrumentation is a technique that allows compile-time program manipulation. In particular, by relying on ad-hoc tools, the end user is able to alter the program's execution flow without affecting its overall semantic. This technique has been effectively used, e.g., to support code profiling, performance analysis, error detection, attack detection, or behavior monitoring. Nevertheless, efficiently relying on static instrumentation for producing executables which can be deployed without affecting the overall performance of the application still presents technical and methodological issues. In this paper, we present Hijacker, an open-source customizable static binary instrumentation tool which is able to alter a program's execution flow according to some user-specified rules, limiting the execution overhead due to the code snippets inserted in the original program, thus enabling for the exploitation in high performance computing. The tool is highly modular and works on an internal representation of the program which allows to perform complex instrumentation tasks efficiently, and can be additionally extended to support different instruction sets and executable formats without any need to modify the instrumentation engine. We additionally present an experimental assessment of the overhead induced by the injected code in real HPC applications. © 2013 IEEE

    Magic with Dynamo -- Flexible Cross-Component Linking for Java with Invokedynamic

    Get PDF
    Modern software systems are not built from scratch. They use functionality provided by libraries. These libraries evolve and often upgrades are deployed without the systems being recompiled. In Java, this process is particularly error-prone due to the mismatch between source and binary compatibility, and the lack of API stability in many popular libraries. We propose a novel approach to mitigate this problem based on the use of invokedynamic instructions for cross-component method invocations. The dispatch mechanism of invokedynamic is used to provide on-the-fly signature adaptation. We show how this idea can be used to construct a Java compiler that produces more resilient bytecode. We present the dynamo compiler, a proof-of-concept implemented as a javac post compiler. We evaluate our approach using several benchmark examples and two case studies showing how the dynamo compiler can prevent certain types of linkage and stack overflow errors that have been observed in real-world systems

    A flexible model for dynamic linking in Java and C#

    Get PDF
    Dynamic linking supports flexible code deployment, allowing partially linked code to link further code on the fly, as needed. Thus, end-users enjoy the advantage of automatically receiving any updates, without any need for any explicit actions on their side, such as re-compilation, or re-linking. On the down side, two executions of a program may link in different versions of code, which in some cases causes subtle errors, and may mystify end-users. Dynamic linking in Java and C# are similar: the same linking phases are involved, soundness is based on similar ideas, and executions which do not throw linking errors give the same result. They are, however, not identical: the linking phases are combined differently, and take place in different order. Consequently, linking errors may be detected at different times by Java and C# runtime systems. We develop a non-deterministic model, which describes the behaviour of both Java and C# program executions. The nondeterminism allows us to describe the design space, to distill the similarities between the two languages, and to use one proof of soundness for both. We also prove that all execution strategies are equivalent with respect to terminating executions that do not throw link errors: they give the same results

    Compiler and Architecture Design for Coarse-Grained Programmable Accelerators

    Get PDF
    abstract: The holy grail of computer hardware across all market segments has been to sustain performance improvement at the same pace as silicon technology scales. As the technology scales and the size of transistors shrinks, the power consumption and energy usage per transistor decrease. On the other hand, the transistor density increases significantly by technology scaling. Due to technology factors, the reduction in power consumption per transistor is not sufficient to offset the increase in power consumption per unit area. Therefore, to improve performance, increasing energy-efficiency must be addressed at all design levels from circuit level to application and algorithm levels. At architectural level, one promising approach is to populate the system with hardware accelerators each optimized for a specific task. One drawback of hardware accelerators is that they are not programmable. Therefore, their utilization can be low as they perform one specific function. Using software programmable accelerators is an alternative approach to achieve high energy-efficiency and programmability. Due to intrinsic characteristics of software accelerators, they can exploit both instruction level parallelism and data level parallelism. Coarse-Grained Reconfigurable Architecture (CGRA) is a software programmable accelerator consists of a number of word-level functional units. Motivated by promising characteristics of software programmable accelerators, the potentials of CGRAs in future computing platforms is studied and an end-to-end CGRA research framework is developed. This framework consists of three different aspects: CGRA architectural design, integration in a computing system, and CGRA compiler. First, the design and implementation of a CGRA and its instruction set is presented. This design is then modeled in a cycle accurate system simulator. The simulation platform enables us to investigate several problems associated with a CGRA when it is deployed as an accelerator in a computing system. Next, the problem of mapping a compute intensive region of a program to CGRAs is formulated. From this formulation, several efficient algorithms are developed which effectively utilize CGRA scarce resources very well to minimize the running time of input applications. Finally, these mapping algorithms are integrated in a compiler framework to construct a compiler for CGRADissertation/ThesisDoctoral Dissertation Computer Science 201

    What is Java binary compatibility?

    No full text
    Separate compilation allows the decomposition of programs into units that may be compiled separately, and linked into an executable. Traditionally, separate compilation was equivalent to the compilation of all units together, and modi cation and re-compilation of one unit required re-compilation of all importing units. Java suggests a more exible framework, in which the linker checks the integrity of the binaries to be combined. Certain source code modi cations, such asaddition of methods to classes, are de ned as binary compatible. The language description guarantees that binaries of types (i.e. classes or interfaces) modi ed in binary compatible ways may be re-compiled and linked with the binaries of types that imported and were compiled using the earlier versions of the modi ed types. However, this is not always the case: some of the changes considered by Java as binary compatible do not guarantee successful linking and execution. In this paper we study the concepts around binary compatibility. We suggest a formalization of the requirement of safe linking and execution without re-compilation, investigate alternatives, demonstrate several of its properties, and propose a more restricted de nition of binary compatible changes. Finally, we prove for a substantial subset of Java, that this restricted de nition guarantees error-free linking and execution.
    corecore