806 research outputs found

    Applying the business process and practice alignment meta-model: Daily practices and process modelling

    Get PDF
    Background: Business Process Modelling (BPM) is one of the most important phases of information system design. Business Process (BP) meta-models allow capturing informational and behavioural aspects of business processes. Unfortunately, standard BP meta-modelling approaches focus just on process description, providing different BP models. It is not possible to compare and identify related daily practices in order to improve BP models. This lack of information implies that further research in BP meta-models is needed to reflect the evolution/change in BP. Considering this limitation, this paper introduces a new BP meta-model designed by Business Process and Practice Alignment Meta-model (BPPAMeta-model). Our intention is to present a meta-model that addresses features related to the alignment between daily work practices and BP descriptions. Objectives: This paper intends to present a meta-model which is going to integrate daily work information into coherent and sound process definitions. Methods/Approach: The methodology employed in the research follows a design-science approach. Results: The results of the case study are related to the application of the proposed meta-model to align the specification of a BP model with work practices models. Conclusions: This meta-model can be used within the BPPAM methodology to specify or improve business processes models based on work practice descriptions

    Business process and practice alignment meta-model

    Get PDF
    Business Process Modelling (BPM) is one of the most important phases of information system design. Business Process meta-models allow capturing informational and behavioural aspects of business processes. Unfortunately, standard business process meta-modelling approaches, such as the Business Process Model and Notation (BPMN) Meta-model, Quality-Oriented Business Process Meta-Model (QOBPM) and Transactional Meta-Model for Business Process (TMBP) focus just on process description, providing different business process models. According to these meta-modelling approaches, it is not possible to compare and identify related daily practices in order to improve business process models. This lack of information recognizes that further research in Business Process (BP) meta-model is needed to reflect the evolution/change on software processes. Considering this limitation in BP meta-modelling, this paper presents a comparative study of the most recognized business process meta-models approaches and introduces a new BP meta-model designed by Business Process and Practice Alignment Meta-model (BPPAMeta-model). Our intention is to present observed problems in existing approaches and propose a business process meta-model that addresses features related to the alignment between daily work practices and business process descriptions. (C) 2015 The Authors. Published by Elsevier B.V

    Patterns-based Evaluation of Open Source BPM Systems: The Cases of jBPM, OpenWFE, and Enhydra Shark

    Get PDF
    In keeping with the proliferation of free software development initiatives and the increased interest in the business process management domain, many open source workflow and business process management systems have appeared during the last few years and are now under active development. This upsurge gives rise to two important questions: what are the capabilities of these systems? and how do they compare to each other and to their closed source counterparts? i.e. in other words what is the state-of-the-art in the area?. To gain an insight into the area, we have conducted an in-depth analysis of three of the major open source workflow management systems - jBPM, OpenWFE and Enhydra Shark, the results of which are reported here. This analysis is based on the workflow patterns framework and provides a continuation of the series of evaluations performed using the same framework on closed source systems, business process modeling languages and web-service composition standards. The results from evaluations of the three open source systems are compared with each other and also with the results from evaluations of three representative closed source systems - Staffware, WebSphere MQ and Oracle BPEL PM, documented in earlier works. The overall conclusion is that open source systems are targeted more toward developers rather than business analysts. They generally provide less support for the patterns than closed source systems, particularly with respect to the resource perspective which describes the various ways in which work is distributed amongst business users and managed through to completion

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    Fostering Distributed Business Logic in Open Collaborative Networks: an integrated approach based on semantic and swarm coordination

    Get PDF
    Given the great opportunities provided by Open Collaborative Networks (OCNs), their success depends on the effective integration of composite business logic at all stages. However, a dilemma between cooperation and competition is often found in environments where the access to business knowledge can provide absolute advantages over the competition. Indeed, although it is apparent that business logic should be automated for an effective integration, chain participants at all segments are often highly protective of their own knowledge. In this paper, we propose a solution to this problem by outlining a novel approach with a supporting architectural view. In our approach, business rules are modeled via semantic web and their execution is coordinated by a workflow model. Each company’s rule can be kept as private, and the business rules can be combined together to achieve goals with defined interdependencies and responsibilities in the workflow. The use of a workflow model allows assembling business facts together while protecting data source. We propose a privacy-preserving perturbation technique which is based on digital stigmergy. Stigmergy is a processing schema based on the principle of self-aggregation of marks produced by data. Stigmergy allows protecting data privacy, because only marks are involved in aggregation, in place of actual data values, without explicit data modeling. This paper discusses the proposed approach and examines its characteristics through actual scenarios

    A standards-based ICT framework to enable a service-oriented approach to clinical decision support

    Get PDF
    This research provides evidence that standards based Clinical Decision Support (CDS) at the point of care is an essential ingredient of electronic healthcare service delivery. A Service Oriented Architecture (SOA) based solution is explored, that serves as a task management system to coordinate complex distributed and disparate IT systems, processes and resources (human and computer) to provide standards based CDS. This research offers a solution to the challenges in implementing computerised CDS such as integration with heterogeneous legacy systems. Reuse of components and services to reduce costs and save time. The benefits of a sharable CDS service that can be reused by different healthcare practitioners to provide collaborative patient care is demonstrated. This solution provides orchestration among different services by extracting data from sources like patient databases, clinical knowledge bases and evidence-based clinical guidelines (CGs) in order to facilitate multiple CDS requests coming from different healthcare settings. This architecture aims to aid users at different levels of Healthcare Delivery Organizations (HCOs) to maintain a CDS repository, along with monitoring and managing services, thus enabling transparency. The research employs the Design Science research methodology (DSRM) combined with The Open Group Architecture Framework (TOGAF), an open source group initiative for Enterprise Architecture Framework (EAF). DSRM’s iterative capability addresses the rapidly evolving nature of workflows in healthcare. This SOA based solution uses standards-based open source technologies and platforms, the latest healthcare standards by HL7 and OMG, Decision Support Service (DSS) and Retrieve, Update Locate Service (RLUS) standard. Combining business process management (BPM) technologies, business rules with SOA ensures the HCO’s capability to manage its processes. This architectural solution is evaluated by successfully implementing evidence based CGs at the point of care in areas such as; a) Diagnostics (Chronic Obstructive Disease), b) Urgent Referral (Lung Cancer), c) Genome testing and integration with CDS in screening (Lynch’s syndrome). In addition to medical care, the CDS solution can benefit organizational processes for collaborative care delivery by connecting patients, physicians and other associated members. This framework facilitates integration of different types of CDS ideal for the different healthcare processes, enabling sharable CDS capabilities within and across organizations
    corecore