109 research outputs found

    A Middleware Infrustracture for Building Mixed Reality Applications in Ubiquitous Computing Environments.

    Get PDF

    Performance Factors in Neurosurgical Simulation and Augmented Reality Image Guidance

    Get PDF
    Virtual reality surgical simulators have seen widespread adoption in an effort to provide safe, cost-effective and realistic practice of surgical skills. However, the majority of these simulators focus on training low-level technical skills, providing only prototypical surgical cases. For many complex procedures, this approach is deficient in representing anatomical variations that present clinically, failing to challenge users’ higher-level cognitive skills important for navigation and targeting. Surgical simulators offer the means to not only simulate any case conceivable, but to test novel approaches and examine factors that influence performance. Unfortunately, there is a void in the literature surrounding these questions. This thesis was motivated by the need to expand the role of surgical simulators to provide users with clinically relevant scenarios and evaluate human performance in relation to image guidance technologies, patient-specific anatomy, and cognitive abilities. To this end, various tools and methodologies were developed to examine cognitive abilities and knowledge, simulate procedures, and guide complex interventions all within a neurosurgical context. The first chapter provides an introduction to the material. The second chapter describes the development and evaluation of a virtual anatomical training and examination tool. The results suggest that learning occurs and that spatial reasoning ability is an important performance predictor, but subordinate to anatomical knowledge. The third chapter outlines development of automation tools to enable efficient simulation studies and data management. In the fourth chapter, subjects perform abstract targeting tasks on ellipsoid targets with and without augmented reality guidance. While the guidance tool improved accuracy, performance with the tool was strongly tied to target depth estimation – an important consideration for implementation and training with similar guidance tools. In the fifth chapter, neurosurgically experienced subjects were recruited to perform simulated ventriculostomies. Results showed anatomical variations influence performance and could impact outcome. Augmented reality guidance showed no marked improvement in performance, but exhibited a mild learning curve, indicating that additional training may be warranted. The final chapter summarizes the work presented. Our results and novel evaluative methodologies lay the groundwork for further investigation into simulators as versatile research tools to explore performance factors in simulated surgical procedures

    A Blended Learning System to Improve Motivation, Mood State, and Satisfaction in Undergraduate Students: Randomized Controlled Trial

    Get PDF
    Background: Smartphone-based learning, or mobile learning (m-learning), has become a popular learning-and-teaching strategy in educational environments. Blended learning combines strategies such as m-learning with conventional learning to offer continuous training, anytime and anywhere, via innovative learning activities. Objective: The main aim of this work was to examine the short-term (ie, 2-week) effects of a blended learning method using traditional materials plus a mobile app—the iPOT mobile learning app—on knowledge, motivation, mood state, and satisfaction among undergraduate students enrolled in a health science first-degree program. Methods: The study was designed as a two-armed, prospective, single-blind, randomized controlled trial. Subjects who met the inclusion criteria were randomly assigned to either the intervention group (ie, blended learning involving traditional lectures plus m-learning via the use of the iPOT app) or the control group (ie, traditional on-site learning). For both groups, the educational program involved 13 lessons on basic health science. The iPOT app is a hybrid, multiplatform (ie, iOS and Android) smartphone app with an interactive teacher-student interface. Outcomes were measured via multiple-choice questions (ie, knowledge), the Instructional Materials Motivation Survey (ie, motivation), the Profile of Mood States scale (ie, mood state), and Likert-type questionnaires (ie, satisfaction and linguistic competence). Results: A total of 99 students were enrolled, with 49 (49%) in the intervention group and 50 (51%) in the control group. No difference was seen between the two groups in terms of theoretical knowledge gain (P=.92). However, the intervention group subjects returned significantly higher scores than the control group subjects for all postintervention assessed items via the motivation questionnaire (all P<.001). Analysis of covariance (ANCOVA) revealed a significant difference in the confusion and bewilderment component in favor of the intervention group (P=.01), but only a trend toward significance in anger and hostility as well as total score. The intervention group subjects were more satisfied than the members of the control group with respect to five out of the six items evaluated: general satisfaction (P<.001), clarity of the instructions (P<.01), clarity with the use of the learning method (P<.001), enough time to complete the proposed exercises (P<.01), and improvement in the capacity to learn content (P<.001). Finally, the intervention group subjects who were frequent users of the app showed stronger motivation, as well as increased perception of greater gains in their English-language competence, than did infrequent users.Educational Innovation Unit of the University of Granada, Spain 16-54University of Granada, Plan Propio de Investigacion 2016, Excellence actions: Units of Excellence; Unit of Excellence on Exercise and Health (UCEES

    Haptic Media Scenes

    Get PDF
    The aim of this thesis is to apply new media phenomenological and enactive embodied cognition approaches to explain the role of haptic sensitivity and communication in personal computer environments for productivity. Prior theory has given little attention to the role of haptic senses in influencing cognitive processes, and do not frame the richness of haptic communication in interaction design—as haptic interactivity in HCI has historically tended to be designed and analyzed from a perspective on communication as transmissions, sending and receiving haptic signals. The haptic sense may not only mediate contact confirmation and affirmation, but also rich semiotic and affective messages—yet this is a strong contrast between this inherent ability of haptic perception, and current day support for such haptic communication interfaces. I therefore ask: How do the haptic senses (touch and proprioception) impact our cognitive faculty when mediated through digital and sensor technologies? How may these insights be employed in interface design to facilitate rich haptic communication? To answer these questions, I use theoretical close readings that embrace two research fields, new media phenomenology and enactive embodied cognition. The theoretical discussion is supported by neuroscientific evidence, and tested empirically through case studies centered on digital art. I use these insights to develop the concept of the haptic figura, an analytical tool to frame the communicative qualities of haptic media. The concept gauges rich machine- mediated haptic interactivity and communication in systems with a material solution supporting active haptic perception, and the mediation of semiotic and affective messages that are understood and felt. As such the concept may function as a design tool for developers, but also for media critics evaluating haptic media. The tool is used to frame a discussion on opportunities and shortcomings of haptic interfaces for productivity, differentiating between media systems for the hand and the full body. The significance of this investigation is demonstrating that haptic communication is an underutilized element in personal computer environments for productivity and providing an analytical framework for a more nuanced understanding of haptic communication as enabling the mediation of a range of semiotic and affective messages, beyond notification and confirmation interactivity

    Twenty years into the new millennium: How integrated is Mathematics, Physics and Computer Science at secondary school level?

    Get PDF
    Twenty years into the millennium, the world has been confronted with a pandemic that has had an immeasurable impact on the workplace, learning environment and related technologies. Technology and technological advancements are founded on three disciplines, namely Physics, Mathematics and Computer Science. Internationally, an integration of the curricula of these disciplines are promoted in the education space, as an effective way to achieve 21st century capabilities that lately includes computational thinking. This study explores the changes in the content and alignment of the three subjects in the South African secondary school system from an interdisciplinary framework perspective. Textbooks, curriculum documents and planning calendars provided the information for the content analysis. The content in Physics and Mathematics have remained basically the same, with a few topics removed from Physics and some added to Mathematics. Information Technology has replaced Computer Science, with significant changes in content in alignment with developments in computing technology. No clear indication of an alignment between the disciplines could be found, which, to a certain extent, puts South Africa outside the international frame. The basic education system appears to run an assessment-driven curriculum in Mathematics, Physical Sciences and Information Technology. This system produces poor results and seemingly does not allow for interdisciplinary skills development

    The 16th international symposium on wearable computers, ISWC 2012, adjunct proceedings, Newcastle Upon Tyne, UK, June 18-22 2012

    Get PDF
    corecore