29,017 research outputs found

    SubCMap: subject and condition specific effect maps

    Get PDF
    Current methods for statistical analysis of neuroimaging data identify condition related structural alterations in the human brain by detecting group differences. They construct detailed maps showing population-wide changes due to a condition of interest. Although extremely useful, methods do not provide information on the subject-specific structural alterations and they have limited diagnostic value because group assignments for each subject are required for the analysis. In this article, we propose SubCMap, a novel method to detect subject and condition specific structural alterations. SubCMap is designed to work without the group assignment information in order to provide diagnostic value. Unlike outlier detection methods, SubCMap detections are condition-specific and can be used to study the effects of various conditions or for diagnosing diseases. The method combines techniques from classification, generalization error estimation and image restoration to the identify the condition-related alterations. Experimental evaluation is performed on synthetically generated data as well as data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Results on synthetic data demonstrate the advantages of SubCMap compared to population-wide techniques and higher detection accuracy compared to outlier detection. Analysis with the ADNI dataset show that SubCMap detections on cortical thickness data well correlate with non-imaging markers of Alzheimer's Disease (AD), the Mini Mental State Examination Score and Cerebrospinal Fluid amyloid-β levels, suggesting the proposed method well captures the inter-subject variation of AD effects

    CLEAR: Covariant LEAst-square Re-fitting with applications to image restoration

    Full text link
    In this paper, we propose a new framework to remove parts of the systematic errors affecting popular restoration algorithms, with a special focus for image processing tasks. Generalizing ideas that emerged for â„“1\ell_1 regularization, we develop an approach re-fitting the results of standard methods towards the input data. Total variation regularizations and non-local means are special cases of interest. We identify important covariant information that should be preserved by the re-fitting method, and emphasize the importance of preserving the Jacobian (w.r.t. the observed signal) of the original estimator. Then, we provide an approach that has a "twicing" flavor and allows re-fitting the restored signal by adding back a local affine transformation of the residual term. We illustrate the benefits of our method on numerical simulations for image restoration tasks

    Task-Driven Dictionary Learning

    Get PDF
    Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations.Comment: final draft post-refereein
    • …
    corecore