2,707 research outputs found

    Performance and optimization of support vector machines in high-energy physics classification problems

    Full text link
    In this paper we promote the use of Support Vector Machines (SVM) as a machine learning tool for searches in high-energy physics. As an example for a new- physics search we discuss the popular case of Supersymmetry at the Large Hadron Collider. We demonstrate that the SVM is a valuable tool and show that an automated discovery- significance based optimization of the SVM hyper-parameters is a highly efficient way to prepare an SVM for such applications. A new C++ LIBSVM interface called SVM-HINT is developed and available on Github.Comment: 20 pages, 6 figure

    What is the Machine Learning?

    Full text link
    Applications of machine learning tools to problems of physical interest are often criticized for producing sensitivity at the expense of transparency. To address this concern, we explore a data planing procedure for identifying combinations of variables -- aided by physical intuition -- that can discriminate signal from background. Weights are introduced to smooth away the features in a given variable(s). New networks are then trained on this modified data. Observed decreases in sensitivity diagnose the variable's discriminating power. Planing also allows the investigation of the linear versus non-linear nature of the boundaries between signal and background. We demonstrate the efficacy of this approach using a toy example, followed by an application to an idealized heavy resonance scenario at the Large Hadron Collider. By unpacking the information being utilized by these algorithms, this method puts in context what it means for a machine to learn.Comment: 6 pages, 3 figures. Version published in PRD, discussion adde

    Applying Rule Ensembles to the Search for Super-Symmetry at the Large Hadron Collider

    Get PDF
    In this note we give an example application of a recently presented predictive learning method called Rule Ensembles. The application we present is the search for super-symmetric particles at the Large Hadron Collider. In particular, we consider the problem of separating the background coming from top quark production from the signal of super-symmetric particles. The method is based on an expansion of base learners, each learner being a rule, i.e. a combination of cuts in the variable space describing signal and background. These rules are generated from an ensemble of decision trees. One of the results of the method is a set of rules (cuts) ordered according to their importance, which gives useful tools for diagnosis of the model. We also compare the method to a number of other multivariate methods, in particular Artificial Neural Networks, the likelihood method and the recently presented boosted decision tree method. We find better performance of Rule Ensembles in all cases. For example for a given significance the amount of data needed to claim SUSY discovery could be reduced by 15 % using Rule Ensembles as compared to using a likelihood method.Comment: 24 pages, 7 figures, replaced to match version accepted for publication in JHE
    • …
    corecore