132,046 research outputs found

    Comparative analysis of machine learning algorithms for multi-syndrome classification of neurodegenerative syndromes

    Get PDF
    Importance: The entry of artificial intelligence into medicine is pending. Several methods have been used for the predictions of structured neuroimaging data, yet nobody compared them in this context. Objective: Multi-class prediction is key for building computational aid systems for differential diagnosis. We compared support vector machine, random forest, gradient boosting, and deep feed-forward neural networks for the classification of different neurodegenerative syndromes based on structural magnetic resonance imaging. Design, setting, and participants: Atlas-based volumetry was performed on multi-centric T1-weighted MRI data from 940 subjects, i.e., 124 healthy controls and 816 patients with ten different neurodegenerative diseases, leading to a multi-diagnostic multi-class classification task with eleven different classes. Interventions: N.A. Main outcomes and measures: Cohen's kappa, accuracy, and F1-score to assess model performance. Results: Overall, the neural network produced both the best performance measures and the most robust results. The smaller classes however were better classified by either the ensemble learning methods or the support vector machine, while performance measures for small classes were comparatively low, as expected. Diseases with regionally specific and pronounced atrophy patterns were generally better classified than diseases with widespread and rather weak atrophy. Conclusions and relevance: Our study furthermore underlines the necessity of larger data sets but also calls for a careful consideration of different machine learning methods that can handle the type of data and the classification task best

    SAMN: A Sample Attention Memory Network Combining SVM and NN in One Architecture

    Full text link
    Support vector machine (SVM) and neural networks (NN) have strong complementarity. SVM focuses on the inner operation among samples while NN focuses on the operation among the features within samples. Thus, it is promising and attractive to combine SVM and NN, as it may provide a more powerful function than SVM or NN alone. However, current work on combining them lacks true integration. To address this, we propose a sample attention memory network (SAMN) that effectively combines SVM and NN by incorporating sample attention module, class prototypes, and memory block to NN. SVM can be viewed as a sample attention machine. It allows us to add a sample attention module to NN to implement the main function of SVM. Class prototypes are representatives of all classes, which can be viewed as alternatives to support vectors. The memory block is used for the storage and update of class prototypes. Class prototypes and memory block effectively reduce the computational cost of sample attention and make SAMN suitable for multi-classification tasks. Extensive experiments show that SAMN achieves better classification performance than single SVM or single NN with similar parameter sizes, as well as the previous best model for combining SVM and NN. The sample attention mechanism is a flexible module that can be easily deepened and incorporated into neural networks that require it

    Benchmark of machine learning methods for classification of a Sentinel-2 image

    Get PDF
    Thanks to mainly ESA and USGS, a large bulk of free images of the Earth is readily available nowadays. One of the main goals of remote sensing is to label images according to a set of semantic categories, i.e. image classification. This is a very challenging issue since land cover of a specific class may present a large spatial and spectral variability and objects may appear at different scales and orientations. In this study, we report the results of benchmarking 9 machine learning algorithms tested for accuracy and speed in training and classification of land-cover classes in a Sentinel-2 dataset. The following machine learning methods (MLM) have been tested: linear discriminant analysis, k-nearest neighbour, random forests, support vector machines, multi layered perceptron, multi layered perceptron ensemble, ctree, boosting, logarithmic regression. The validation is carried out using a control dataset which consists of an independent classification in 11 land-cover classes of an area about 60 km2, obtained by manual visual interpretation of high resolution images (20 cm ground sampling distance) by experts. In this study five out of the eleven classes are used since the others have too few samples (pixels) for testing and validating subsets. The classes used are the following: (i) urban (ii) sowable areas (iii) water (iv) tree plantations (v) grasslands. Validation is carried out using three different approaches: (i) using pixels from the training dataset (train), (ii) using pixels from the training dataset and applying cross-validation with the k-fold method (kfold) and (iii) using all pixels from the control dataset. Five accuracy indices are calculated for the comparison between the values predicted with each model and control values over three sets of data: the training dataset (train), the whole control dataset (full) and with k-fold cross-validation (kfold) with ten folds. Results from validation of predictions of the whole dataset (full) show the random forests method with the highest values; kappa index ranging from 0.55 to 0.42 respectively with the most and least number pixels for training. The two neural networks (multi layered perceptron and its ensemble) and the support vector machines - with default radial basis function kernel - methods follow closely with comparable performanc

    EEG sleep stages identification based on weighted undirected complex networks

    Get PDF
    Sleep scoring is important in sleep research because any errors in the scoring of the patient's sleep electroencephalography (EEG) recordings can cause serious problems such as incorrect diagnosis, medication errors, and misinterpretations of patient's EEG recordings. The aim of this research is to develop a new automatic method for EEG sleep stages classification based on a statistical model and weighted brain networks. Methods each EEG segment is partitioned into a number of blocks using a sliding window technique. A set of statistical features are extracted from each block. As a result, a vector of features is obtained to represent each EEG segment. Then, the vector of features is mapped into a weighted undirected network. Different structural and spectral attributes of the networks are extracted and forwarded to a least square support vector machine (LS-SVM) classifier. At the same time the network's attributes are also thoroughly investigated. It is found that the network's characteristics vary with their sleep stages. Each sleep stage is best represented using the key features of their networks. Results In this paper, the proposed method is evaluated using two datasets acquired from different channels of EEG (Pz-Oz and C3-A2) according to the R&K and the AASM without pre-processing the original EEG data. The obtained results by the LS-SVM are compared with those by Naïve, k-nearest and a multi-class-SVM. The proposed method is also compared with other benchmark sleep stages classification methods. The comparison results demonstrate that the proposed method has an advantage in scoring sleep stages based on single channel EEG signals. Conclusions An average accuracy of 96.74% is obtained with the C3-A2 channel according to the AASM standard, and 96% with the Pz-Oz channel based on the R&K standard

    Spatio-temporal spectrum sensing in cognitive radio networks using Beamformer-Aided SVM algorithms

    Get PDF
    This paper addresses the problem of spectrum sensing in multi-antenna cognitive radio system using support vector machine (SVM) algorithms. First, we formulated the spectrum sensing problem under multiple primary users scenarios as a multiple state signal detection problem. Next, we propose a novel, beamformer aided feature realization strategy for enhancing the capability of the SVM for signal classification under both single and multiple primary users conditions. Then, we investigate the error correcting output codes (ECOC) based multi-class SVM algorithms and provide a multiple independent model (MIM) alternative for solving the multiple state spectrum sensing problem. The performance of the proposed detectors is quantified in terms of probability of detection, probability of false alarm, receiver operating characteristics (ROC), area under ROC curves (AuC) and overall classification accuracy. Simulation results show that the proposed detectors are robust to both temporal and joint spatio-temporal detection of spectrum holes in cognitive radio networks
    • …
    corecore