12,429 research outputs found

    Open-TEE - An Open Virtual Trusted Execution Environment

    Full text link
    Hardware-based Trusted Execution Environments (TEEs) are widely deployed in mobile devices. Yet their use has been limited primarily to applications developed by the device vendors. Recent standardization of TEE interfaces by GlobalPlatform (GP) promises to partially address this problem by enabling GP-compliant trusted applications to run on TEEs from different vendors. Nevertheless ordinary developers wishing to develop trusted applications face significant challenges. Access to hardware TEE interfaces are difficult to obtain without support from vendors. Tools and software needed to develop and debug trusted applications may be expensive or non-existent. In this paper, we describe Open-TEE, a virtual, hardware-independent TEE implemented in software. Open-TEE conforms to GP specifications. It allows developers to develop and debug trusted applications with the same tools they use for developing software in general. Once a trusted application is fully debugged, it can be compiled for any actual hardware TEE. Through performance measurements and a user study we demonstrate that Open-TEE is efficient and easy to use. We have made Open- TEE freely available as open source.Comment: Author's version of article to appear in 14th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2015, Helsinki, Finland, August 20-22, 201

    Enabling GPU Support for the COMPSs-Mobile Framework

    Get PDF
    Using the GPUs embedded in mobile devices allows for increasing the performance of the applications running on them while reducing the energy consumption of their execution. This article presents a task-based solution for adaptative, collaborative heterogeneous computing on mobile cloud environments. To implement our proposal, we extend the COMPSs-Mobile framework – an implementation of the COMPSs programming model for building mobile applications that offload part of the computation to the Cloud – to support offloading computation to GPUs through OpenCL. To evaluate our solution, we subject the prototype to three benchmark applications representing different application patterns.This work is partially supported by the Joint-Laboratory on Extreme Scale Computing (JLESC), by the European Union through the Horizon 2020 research and innovation programme under contract 687584 (TANGO Project), by the Spanish Goverment (TIN2015-65316-P, BES-2013-067167, EEBB-2016-11272, SEV-2011-00067) and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    Accessible user interface support for multi-device ubiquitous applications: architectural modifiability considerations

    Get PDF
    The market for personal computing devices is rapidly expanding from PC, to mobile, home entertainment systems, and even the automotive industry. When developing software targeting such ubiquitous devices, the balance between development costs and market coverage has turned out to be a challenging issue. With the rise of Web technology and the Internet of things, ubiquitous applications have become a reality. Nonetheless, the diversity of presentation and interaction modalities still drastically limit the number of targetable devices and the accessibility toward end users. This paper presents webinos, a multi-device application middleware platform founded on the Future Internet infrastructure. Hereto, the platform's architectural modifiability considerations are described and evaluated as a generic enabler for supporting applications, which are executed in ubiquitous computing environments

    Comparative Analysis of Open Source Frameworks for Machine Learning with Use Case in Single-Threaded and Multi-Threaded Modes

    Full text link
    The basic features of some of the most versatile and popular open source frameworks for machine learning (TensorFlow, Deep Learning4j, and H2O) are considered and compared. Their comparative analysis was performed and conclusions were made as to the advantages and disadvantages of these platforms. The performance tests for the de facto standard MNIST data set were carried out on H2O framework for deep learning algorithms designed for CPU and GPU platforms for single-threaded and multithreaded modes of operation.Comment: 4 pages, 6 figures, 4 tables; XIIth International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT 2017), Lviv, Ukrain

    Context-driven progressive enhancement of mobile web applications: a multicriteria decision-making approach

    Get PDF
    Personal computing has become all about mobile and embedded devices. As a result, the adoption rate of smartphones is rapidly increasing and this trend has set a need for mobile applications to be available at anytime, anywhere and on any device. Despite the obvious advantages of such immersive mobile applications, software developers are increasingly facing the challenges related to device fragmentation. Current application development solutions are insufficiently prepared for handling the enormous variety of software platforms and hardware characteristics covering the mobile eco-system. As a result, maintaining a viable balance between development costs and market coverage has turned out to be a challenging issue when developing mobile applications. This article proposes a context-aware software platform for the development and delivery of self-adaptive mobile applications over the Web. An adaptive application composition approach is introduced, capable of autonomously bypassing context-related fragmentation issues. This goal is achieved by incorporating and validating the concept of fine-grained progressive application enhancements based on a multicriteria decision-making strategy
    • …
    corecore