502 research outputs found

    Implementation of Genetic Algorithms in FPGA-based Reconfigurable Computing Systems

    Get PDF
    Genetic Algorithms (GAs) are used to solve many optimization problems in science and engineering. GA is a heuristics approach which relies largely on random numbers to determine the approximate solution of an optimization problem. We use the Mersenne Twister Algorithm (MTA) to generate a non-overlapping sequence of random numbers with a period of 219937-1. The random numbers are generated from a state vector that consists of 624 elements. Our work on state vector generation and the GA implementation targets the solution of a flow-line scheduling problem where the flow-lines have jobs to process and the goal is to find a suitable completion time for all jobs using a GA. The state vector generation algorithm (MTA) performs poorly in traditional von Neumann architectures due to its poor temporal and spatial locality. Therefore its performance is limited by the speed at which we can access memory. With an approximate increase of processor performance by 60% per year and a drop of memory latency only 7% per year, a new approach is needed for performance improvement. On the other hand, the GA implementation in a general-purpose microprocessor, though performs reasonably well, has scope for performance gain in a parallel implementation. The parallel implementation of the GA can work as a kernel for applications that uses a GA to reach a solution. Our approach is to implement the state vector generation process and the GA in an FPGA-based Reconfigurable Computing (RC) system with the goal of improving the overall performance. Application design for FPGA-based RC systems is not trivial and the performance improvement is not guaranteed. Designing for RC systems requires algorithmic parallelism in order to exploit the inherent parallelism of the FPGA. We are using a high-level language that provides a level of abstraction from the lower-level hardware in the RC system making it difficult to fully exploit some of the architectural benefits of the FPGA. Considering these factors, we improve the state vector generation process algorithmically. Our implementation generates state vectors 5X faster than the previous implementation in an Intel Xeon microprocessor of 2GHz. The modified algorithm is also implemented in a Xilinx Virtex-4 FPGA that results in a 2.4X speedup. Improvement in this preprocessing step accelerates GA application performance as random numbers are generated from these state vectors for the genetic operators. We simulate the basic operations of a GA in an FPGA to study its behavior in a parallel environment and analyze the results. The initial FPGA implementation of the GA runs about 7X slower than its microprocessor counterpart. The reasons are explained along with suggestions for improvement and future work

    The ARIEL Instrument Control Unit design for the M4 Mission Selection Review of the ESA's Cosmic Vision Program

    Get PDF
    The Atmospheric Remote-sensing Infrared Exoplanet Large-survey mission (ARIEL) is one of the three present candidates for the ESA M4 (the fourth medium mission) launch opportunity. The proposed Payload will perform a large unbiased spectroscopic survey from space concerning the nature of exoplanets atmospheres and their interiors to determine the key factors affecting the formation and evolution of planetary systems. ARIEL will observe a large number (>500) of warm and hot transiting gas giants, Neptunes and super-Earths around a wide range of host star types, targeting planets hotter than 600 K to take advantage of their well-mixed atmospheres. It will exploit primary and secondary transits spectroscopy in the 1.2-8 um spectral range and broad-band photometry in the optical and Near IR (NIR). The main instrument of the ARIEL Payload is the IR Spectrometer (AIRS) providing low-resolution spectroscopy in two IR channels: Channel 0 (CH0) for the 1.95-3.90 um band and Channel 1 (CH1) for the 3.90-7.80 um range. It is located at the intermediate focal plane of the telescope and common optical system and it hosts two IR sensors and two cold front-end electronics (CFEE) for detectors readout, a well defined process calibrated for the selected target brightness and driven by the Payload's Instrument Control Unit (ICU).Comment: Experimental Astronomy, Special Issue on ARIEL, (2017

    Investigating data throughput and partial dynamic reconfiguration in a commodity FPGA cluster framework

    Get PDF
    There are many computational kernels where parallelism can be exploited in applica- tion specific hardware, yielding significant speedup over a general purpose processor based solution. Commodity cluster computing technologies have been combined with FPGA co- processors, resulting in even greater performance capability through the exploitation of multiple levels of parallelism. One particularly economic solution both in terms of cost and power consumption is to cluster hybrid FPGAs with commodity network intercon- nects. Hybrid FPGAs combine embedded microprocessors with reconfigurable hardware resources on a single chip offering lower power consumption and cost compared to a tra- ditional I/O bus FPGA coprocessor solution. While there is a lot of promise in using com- modity hybrid FPGAs in a cluster configuration, the design flow and performance char- acteristics of such systems are currently a limiting factor to the range of applications that could benefit from such a system. The contribution of this thesis is a framework for clustering commodity FPGAs which integrates high speed DMA data transfers with a flexible FPGA resource sharing scheme enabled through partial reconfiguration. The framework includes an embedded Linux op- erating system, with a custom device driver to manage data transfers and hardware recon- figuration. User space tools for cluster computing including ssh and MPI are deployed allowing tasks to be split among nodes in the cluster. Performance analysis is performed with a homogeneous cluster composed of four Virtex-5 FXT based FPGA boards. The results demonstrate the advantages over previous work in terms of data throughput and reconfiguration, as well as promote future research efforts

    A timeshared, runtime reconfigurable hardware co-processing architecture

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (leaves 73-74).The constant desire for increased performance in microprocessor systems has led to the need for specialized hardware cores to accelerate specific computational tasks. In this thesis, we explore the potential of using FPGA partial reconfiguration to create a platform for customized hardware cores that may be loaded on demand, at runtime, and replaced when not in use. We implement two new software tools, bitparse and bitrender, to demonstrate the bitstream relocation technique. Further, we present a functional microprocessor system coupled with a runtime reprogramable peripheral synthesized on a Xilinx Virtex-5 FPGA and discuss its performance implications.by Benjamin S. Gelb.M.Eng

    Hybrid Linux System Modeling with Mixed-Level Simulation

    Get PDF
    Dissertação de mestrado integrado em Engenharia Electrónica Industrial e ComputadoresWe live in a world where the need for computer-based systems with better performances is growing fast, and part of these systems are embedded systems. This kind of systems are everywhere around us, and we use them everyday even without noticing. Nevertheless, there are issues related to embedded systems in what comes to real-time requirements, because the failure of such systems can be harmful to the user or its environment. For this reason, a common technique to meet real-time requirements in difficult scenarios is accelerating software applications by using parallelization techniques and dedicated hardware components. This dissertations’ goal is to adopt a methodology of hardware-software co-design aided by co-simulation, making the design flow more efficient and reliable. An isolated validation does not guarantee integral system functionality, but the use of an integrated co-simulation environment allows detecting system problems before moving to the physical implementation. In this dissertation, an integrated co-simulation environment will be developed, using the Quick EMUlator (QEMU) as a tool for emulating embedded software platforms in a Linux-based environment. A SystemVerilog Direct Programming Interface (DPI) Library was developed in order to allow SystemVerilog simulators that support DPI to perform co-simulation with QEMU. A library for DLL blocks was also developed in order to allow PSIMR to communicate with QEMU. Together with QEMU, these libraries open up the possibility to co-simulate several parts of a system that includes power electronics and hardware acceleration together with an emulated embedded platform. In order to validate the functionality of the developed co-simulation environment, a demonstration application scenario was developed following a design flow that takes advantage of the mentioned simulation environment capabilities.Vivemos num mundo em que a procura por sistemas computer-based com desempenhos cada vez melhores domina o mercado. Estamos rodeados por este tipo de sistemas, usando-os todos os dias sem nos apercebermos disso, sendo grande parte deles sistemas embebidos. Ainda assim, existem problemas relacionados com os sistemas embebidos no que toca aos requisitos de tempo-real, porque uma falha destes sistemas pode ser perigosa para o utilizador ou o ambiente que o rodeia. Devido a isto, uma técnica comum para se conseguir cumprir os requisitos de tempo-real em aplicações críticas é a aceleração de aplicações de software, utilizando técnicas de paralelização e o uso de componentes de hardware dedicados. O objetivo desta dissertação é adotar uma metodologia de co-design de hardwaresoftware apoiada em co-simulação, tornando o design flow mais eficiente e fiável. Uma validação isolada não garante a funcionalidade do sistema completo, mas a utilização de um ambiente de co-simulação permite detetar problemas no sistema antes deste ser implementado na plataforma alvo. Nesta dissertação será desenvolvido um ambiente de co-simulação usando o QEMU como emulador para as plataformas de software "embebido" baseadas em Linux. Uma biblioteca para SystemVerilog DPI foi desenvolvida, que permite a co-simulação entre o QEMU e simuladores de Register-Transfer Level (RTL) que suportem SystemVerilog. Foi também desenvolvida uma biblioteca para os blocos Dynamic Link Library (DLL) do PSIMR , de modo a permitir a ligação ao QEMU. Em conjunto, as bibliotecas desenvolvidas permitem a co-simulação de diversas partes do sistema, nomeadamente do hardware de eletrónica de potência e dos aceleradores de hardware, juntamente com a plataforma embebida emulada no QEMU.Para validar as funcionalidades do ambiente de co-simulação desenvolvido, foi explorado um cenário de aplicação que tem por base esse mesmo ambiente

    Coarse-grained reconfigurable array architectures

    Get PDF
    Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options available to a CGRA designer, covering a large number of existing CGRA designs. The impact of different options on flexibility, performance, and power-efficiency is discussed, as well as the need for compiler support. The ADRES CGRA design template is studied in more detail as a use case to illustrate the need for design space exploration, for compiler support and for the manual fine-tuning of source code

    Co-simulation techniques based on virtual platforms for SoC design and verification in power electronics applications

    Get PDF
    En las últimas décadas, la inversión en el ámbito energético ha aumentado considerablemente. Actualmente, existen numerosas empresas que están desarrollando equipos como convertidores de potencia o máquinas eléctricas con sistemas de control de última generación. La tendencia actual es usar System-on-chips y Field Programmable Gate Arrays para implementar todo el sistema de control. Estos dispositivos facilitan el uso de algoritmos de control más complejos y eficientes, mejorando la eficiencia de los equipos y habilitando la integración de los sistemas renovables en la red eléctrica. Sin embargo, la complejidad de los sistemas de control también ha aumentado considerablemente y con ello la dificultad de su verificación. Los sistemas Hardware-in-the-loop (HIL) se han presentado como una solución para la verificación no destructiva de los equipos energéticos, evitando accidentes y pruebas de alto coste en bancos de ensayo. Los sistemas HIL simulan en tiempo real el comportamiento de la planta de potencia y su interfaz para realizar las pruebas con la placa de control en un entorno seguro. Esta tesis se centra en mejorar el proceso de verificación de los sistemas de control en aplicaciones de electrónica potencia. La contribución general es proporcionar una alternativa a al uso de los HIL para la verificación del hardware/software de la tarjeta de control. La alternativa se basa en la técnica de Software-in-the-loop (SIL) y trata de superar o abordar las limitaciones encontradas hasta la fecha en el SIL. Para mejorar las cualidades de SIL se ha desarrollado una herramienta software denominada COSIL que permite co-simular la implementación e integración final del sistema de control, sea software (CPU), hardware (FPGA) o una mezcla de software y hardware, al mismo tiempo que su interacción con la planta de potencia. Dicha plataforma puede trabajar en múltiples niveles de abstracción e incluye soporte para realizar co-simulación mixtas en distintos lenguajes como C o VHDL. A lo largo de la tesis se hace hincapié en mejorar una de las limitaciones de SIL, su baja velocidad de simulación. Se proponen diferentes soluciones como el uso de emuladores software, distintos niveles de abstracción del software y hardware, o relojes locales en los módulos de la FPGA. En especial se aporta un mecanismo de sincronizaron externa para el emulador software QEMU habilitando su emulación multi-core. Esta aportación habilita el uso de QEMU en plataformas virtuales de co-simulacion como COSIL. Toda la plataforma COSIL, incluido el uso de QEMU, se ha analizado bajo diferentes tipos de aplicaciones y bajo un proyecto industrial real. Su uso ha sido crítico para desarrollar y verificar el software y hardware del sistema de control de un convertidor de 400 kVA

    Splice: A Standardized Peripheral Logic and Interface Creation Engine, Master\u27s Thesis, May 2007

    Get PDF
    Recent advancements in FPGA technology have allowed manufacturers to place general-purpose processors alongside user-configurable logic gates on a single chip. At first glance, these integrated devices would seem to be the ideal deployment platform for hardware-software co-designed systems, but some issues, such as incompatibility across vendors and confusion over which bus interfaces to support, have impeded adoption of these platforms. This thesis describes the design and operation of Splice, a software-based code generation tool intended to address these types of issues by providing a bus-independent structure that allows end-users to easily integrate their customized peripheral logic into embedded systems. To quantify the benefits of this approach, a comparison of a number of Splice-generated interfaces to functionally identical hand-coded mechanisms is provided in the context of a real-world use case scenario
    corecore