523,753 research outputs found

    Disconnection of network hubs and cognitive impairment after traumatic brain injury.

    Get PDF
    Traumatic brain injury affects brain connectivity by producing traumatic axonal injury. This disrupts the function of large-scale networks that support cognition. The best way to describe this relationship is unclear, but one elegant approach is to view networks as graphs. Brain regions become nodes in the graph, and white matter tracts the connections. The overall effect of an injury can then be estimated by calculating graph metrics of network structure and function. Here we test which graph metrics best predict the presence of traumatic axonal injury, as well as which are most highly associated with cognitive impairment. A comprehensive range of graph metrics was calculated from structural connectivity measures for 52 patients with traumatic brain injury, 21 of whom had microbleed evidence of traumatic axonal injury, and 25 age-matched controls. White matter connections between 165 grey matter brain regions were defined using tractography, and structural connectivity matrices calculated from skeletonized diffusion tensor imaging data. This technique estimates injury at the centre of tract, but is insensitive to damage at tract edges. Graph metrics were calculated from the resulting connectivity matrices and machine-learning techniques used to select the metrics that best predicted the presence of traumatic brain injury. In addition, we used regularization and variable selection via the elastic net to predict patient behaviour on tests of information processing speed, executive function and associative memory. Support vector machines trained with graph metrics of white matter connectivity matrices from the microbleed group were able to identify patients with a history of traumatic brain injury with 93.4% accuracy, a result robust to different ways of sampling the data. Graph metrics were significantly associated with cognitive performance: information processing speed (R(2) = 0.64), executive function (R(2) = 0.56) and associative memory (R(2) = 0.25). These results were then replicated in a separate group of patients without microbleeds. The most influential graph metrics were betweenness centrality and eigenvector centrality, which provide measures of the extent to which a given brain region connects other regions in the network. Reductions in betweenness centrality and eigenvector centrality were particularly evident within hub regions including the cingulate cortex and caudate. Our results demonstrate that betweenness centrality and eigenvector centrality are reduced within network hubs, due to the impact of traumatic axonal injury on network connections. The dominance of betweenness centrality and eigenvector centrality suggests that cognitive impairment after traumatic brain injury results from the disconnection of network hubs by traumatic axonal injury

    Direct Estimation of Information Divergence Using Nearest Neighbor Ratios

    Full text link
    We propose a direct estimation method for R\'{e}nyi and f-divergence measures based on a new graph theoretical interpretation. Suppose that we are given two sample sets XX and YY, respectively with NN and MM samples, where η:=M/N\eta:=M/N is a constant value. Considering the kk-nearest neighbor (kk-NN) graph of YY in the joint data set (X,Y)(X,Y), we show that the average powered ratio of the number of XX points to the number of YY points among all kk-NN points is proportional to R\'{e}nyi divergence of XX and YY densities. A similar method can also be used to estimate f-divergence measures. We derive bias and variance rates, and show that for the class of γ\gamma-H\"{o}lder smooth functions, the estimator achieves the MSE rate of O(N2γ/(γ+d))O(N^{-2\gamma/(\gamma+d)}). Furthermore, by using a weighted ensemble estimation technique, for density functions with continuous and bounded derivatives of up to the order dd, and some extra conditions at the support set boundary, we derive an ensemble estimator that achieves the parametric MSE rate of O(1/N)O(1/N). Our estimators are more computationally tractable than other competing estimators, which makes them appealing in many practical applications.Comment: 2017 IEEE International Symposium on Information Theory (ISIT

    Applying graph matching techniques to enhance reuse of plant design information

    Full text link
    This article investigates how graph matching can be applied to process plant design data in order to support the reuse of previous designs. A literature review of existing graph matching algorithms is performed, and a group of algorithms is chosen for further testing. A use case from early phase plant design is presented. A methodology for addressing the use case is proposed, including graph simplification algorithms and node similarity measures, so that existing graph matching algorithms can be applied in the process plant domain. The proposed methodology is evaluated empirically on an industrial case consisting of design data from several pulp and paper plants

    TopoGraph: an end-to-end framework to build and analyze graph cubes

    Get PDF
    Graphs are a fundamental structure that provides an intuitive abstraction for modeling and analyzing complex and highly interconnected data. Given the potential complexity of such data, some approaches proposed extending decision-support systems with multidimensional analysis capabilities over graphs. In this paper, we introduce TopoGraph, an end-to-end framwork for building and analyzing graph cubes. TopoGraph extends the existing graph cube models by defining new types of dimensions and measures and organizing them within a multidimensional space that guarantees multidimensional integrity constraints. This results in defining three new types of graph cubes: property graph cubes, topological graph cubes, and graph-structured cubes. Afterwards, we define the algebraic OLAP operations for such novel cubes. We implement and experimentally validate TopoGraph with different types of real-world datasets.Peer ReviewedPostprint (author's final draft

    Structural network efficiency is associated with cognitive impairment in small-vessel disease.

    Get PDF
    To characterize brain network connectivity impairment in cerebral small-vessel disease (SVD) and its relationship with MRI disease markers and cognitive impairment.METHODS: A cross-sectional design applied graph-based efficiency analysis to deterministic diffusion tensor tractography data from 115 patients with lacunar infarction and leukoaraiosis and 50 healthy individuals. Structural connectivity was estimated between 90 cortical and subcortical brain regions and efficiency measures of resulting graphs were analyzed. Networks were compared between SVD and control groups, and associations between efficiency measures, conventional MRI disease markers, and cognitive function were tested.RESULTS: Brain diffusion tensor tractography network connectivity was significantly reduced in SVD: networks were less dense, connection weights were lower, and measures of network efficiency were significantly disrupted. The degree of brain network disruption was associated with MRI measures of disease severity and cognitive function. In multiple regression models controlling for confounding variables, associations with cognition were stronger for network measures than other MRI measures including conventional diffusion tensor imaging measures. A total mediation effect was observed for the association between fractional anisotropy and mean diffusivity measures and executive function and processing speed.CONCLUSIONS: Brain network connectivity in SVD is disturbed, this disturbance is related to disease severity, and within a mediation framework fully or partly explains previously observed associations between MRI measures and SVD-related cognitive dysfunction. These cross-sectional results highlight the importance of network disruption in SVD and provide support for network measures as a disease marker in treatment studies

    Composite repetition-aware data structures

    Get PDF
    In highly repetitive strings, like collections of genomes from the same species, distinct measures of repetition all grow sublinearly in the length of the text, and indexes targeted to such strings typically depend only on one of these measures. We describe two data structures whose size depends on multiple measures of repetition at once, and that provide competitive tradeoffs between the time for counting and reporting all the exact occurrences of a pattern, and the space taken by the structure. The key component of our constructions is the run-length encoded BWT (RLBWT), which takes space proportional to the number of BWT runs: rather than augmenting RLBWT with suffix array samples, we combine it with data structures from LZ77 indexes, which take space proportional to the number of LZ77 factors, and with the compact directed acyclic word graph (CDAWG), which takes space proportional to the number of extensions of maximal repeats. The combination of CDAWG and RLBWT enables also a new representation of the suffix tree, whose size depends again on the number of extensions of maximal repeats, and that is powerful enough to support matching statistics and constant-space traversal.Comment: (the name of the third co-author was inadvertently omitted from previous version

    Similarity measures over refinement graphs

    Get PDF
    Similarity also plays a crucial role in support vector machines. Similarity assessment plays a key role in lazy learning methods such as k-nearest neighbor or case-based reasoning. In this paper we will show how refinement graphs, that were originally introduced for inductive learning, can be employed to assess and reason about similarity. We will define and analyze two similarity measures, S λ and S π, based on refinement graphs. The anti-unification-based similarity, S λ, assesses similarity by finding the anti-unification of two instances, which is a description capturing all the information common to these two instances. The property-based similarity, S π, is based on a process of disintegrating the instances into a set of properties, and then analyzing these property sets. Moreover these similarity measures are applicable to any representation language for which a refinement graph that satisfies the requirements we identify can be defined. Specifically, we present a refinement graph for feature terms, in which several languages of increasing expressiveness can be defined. The similarity measures are empirically evaluated on relational data sets belonging to languages of different expressiveness. © 2011 The Author(s).Support for this work came from the project Next-CBR TIN2009-13692-C03-01 (co-sponsored by EU FEDER funds)Peer Reviewe
    corecore