61 research outputs found

    Experimental Study of Remote Job Submission and Execution on LRM through Grid Computing Mechanisms

    Full text link
    Remote job submission and execution is fundamental requirement of distributed computing done using Cluster computing. However, Cluster computing limits usage within a single organization. Grid computing environment can allow use of resources for remote job execution that are available in other organizations. This paper discusses concepts of batch-job execution using LRM and using Grid. The paper discusses two ways of preparing test Grid computing environment that we use for experimental testing of concepts. This paper presents experimental testing of remote job submission and execution mechanisms through LRM specific way and Grid computing ways. Moreover, the paper also discusses various problems faced while working with Grid computing environment and discusses their trouble-shootings. The understanding and experimental testing presented in this paper would become very useful to researchers who are new to the field of job management in Grid.Comment: Fourth International Conference on Advanced Computing & Communication Technologies (ACCT), 201

    A resource management architecture for metacomputing systems

    Full text link

    A Policy-Based Resource Brokering Environment for Computational Grids

    Get PDF
    With the advances in networking infrastructure in general, and the Internet in particular, we can build grid environments that allow users to utilize a diverse set of distributed and heterogeneous resources. Since the focus of such environments is the efficient usage of the underlying resources, a critical component is the resource brokering environment that mediates the discovery, access and usage of these resources. With the consumer\u27s constraints, provider\u27s rules, distributed heterogeneous resources and the large number of scheduling choices, the resource brokering environment needs to decide where to place the user\u27s jobs and when to start their execution in a way that yields the best performance for the user and the best utilization for the resource provider. As brokering and scheduling are very complicated tasks, most current resource brokering environments are either specific to a particular grid environment or have limited features. This makes them unsuitable for large applications with heterogeneous requirements. In addition, most of these resource brokering environments lack flexibility. Policies at the resource-, application-, and system-levels cannot be specified and enforced to provide commitment to the guaranteed level of allocation that can help in attracting grid users and contribute to establishing credibility for existing grid environments. In this thesis, we propose and prototype a flexible and extensible Policy-based Resource Brokering Environment (PROBE) that can be utilized by various grid systems. In designing PROBE, we follow a policy-based approach that provides PROBE with the intelligence to not only match the user\u27s request with the right set of resources, but also to assure the guaranteed level of the allocation. PROBE looks at the task allocation as a Service Level Agreement (SLA) that needs to be enforced between the resource provider and the resource consumer. The policy-based framework is useful in a typical grid environment where resources, most of the time, are not dedicated. In implementing PROBE, we have utilized a layered architecture and façade design patterns. These along with the well-defined API, make the framework independent of any architecture and allow for the incorporation of different types of scheduling algorithms, applications and platform adaptors as the underlying environment requires. We have utilized XML as a base for all the specification needs. This provides a flexible mechanism to specify the heterogeneous resources and user\u27s requests along with their allocation constraints. We have developed XML-based specifications by which high-level internal structures of resources, jobs and policies can be specified. This provides interoperability in which a grid system can utilize PROBE to discover and use resources controlled by other grid systems. We have implemented a prototype of PROBE to demonstrate its feasibility. We also describe a test bed environment and the evaluation experiments that we have conducted to demonstrate the usefulness and effectiveness of our approach

    Grid scheduling veneer

    Get PDF
    In the e-Science community, three local resource management systems are commonly used: Condor, OpenPBS and Sun GridEngine. E-Scientists must determine which system is being used to allow them to select which execution site a job should be dispatched to. If they wish to run their applications on an alternative local resource management system, they must rewrite the job description and submit it in a different way. The Grid Scheduling Veneer (GSV) is a middleware solution which provides a single job description language to support a subset of features exhibited by Condor, OpenPBS and SGE. The GSV directs a received job to any of these systems available, based upon current load and job attributes. It also provides additional functionality over each local system. In this dissertation, we discuss the motivation for the GSV project. Subsequently, we describe the methodology and implementation of the system. To test the system, we have designed and deployed a three stage experiment. The experimental results show that the GSV fulfils the requirements and goals of the project

    A study in grid simulation and scheduling

    Get PDF
    Grid computing is emerging as an essential tool for large scale analysis and problem solving in scientific and business domains. Whilst the idea of stealing unused processor cycles is as old as the Internet, we are still far from reaching a position where many distributed resources can be seamlessly utilised on demand. One major issue preventing this vision is deciding how to effectively manage the remote resources and how to schedule the tasks amongst these resources. This thesis describes an investigation into Grid computing, specifically the problem of Grid scheduling. This complex problem has many unique features making it particularly difficult to solve and as a result many current Grid systems employ simplistic, inefficient solutions. This work describes the development of a simulation tool, G-Sim, which can be used to test the effectiveness of potential Grid scheduling algorithms under realistic operating conditions. This tool is used to analyse the effectiveness of a simple, novel scheduling technique in numerous scenarios. The results are positive and show that it could be applied to current procedures to enhance performance and decrease the negative effect of resource failure. Finally a conversion between the Grid scheduling problem and the classic computing problem SAT is provided. Such a conversion allows for the possibility of applying sophisticated SAT solving procedures to Grid scheduling providing potentially effective solutions

    Economic-based Distributed Resource Management and Scheduling for Grid Computing

    Full text link
    Computational Grids, emerging as an infrastructure for next generation computing, enable the sharing, selection, and aggregation of geographically distributed resources for solving large-scale problems in science, engineering, and commerce. As the resources in the Grid are heterogeneous and geographically distributed with varying availability and a variety of usage and cost policies for diverse users at different times and, priorities as well as goals that vary with time. The management of resources and application scheduling in such a large and distributed environment is a complex task. This thesis proposes a distributed computational economy as an effective metaphor for the management of resources and application scheduling. It proposes an architectural framework that supports resource trading and quality of services based scheduling. It enables the regulation of supply and demand for resources and provides an incentive for resource owners for participating in the Grid and motives the users to trade-off between the deadline, budget, and the required level of quality of service. The thesis demonstrates the capability of economic-based systems for peer-to-peer distributed computing by developing users' quality-of-service requirements driven scheduling strategies and algorithms. It demonstrates their effectiveness by performing scheduling experiments on the World-Wide Grid for solving parameter sweep applications

    A framework for evolving grid computing systems.

    Get PDF
    Grid computing was born in the 1990s, when researchers were looking for a way to share expensive computing resources and experiment equipment. Grid computing is becoming increasingly popular because it promotes the sharing of distributed resources that may be heterogeneous in nature, and it enables scientists and engineering professionals to solve large scale computing problems. In reality, there are already huge numbers of grid computing facilities distributed around the world, each one having been created to serve a particular group of scientists such as weather forecasters, or a group of users such as stock markets. However, the need to extend the functionalities of current grid systems lends itself to the consideration of grid evolution. This allows the combination of many disjunct grids into a single powerful grid that can operate as one vast computational resource, as well as for grid environments to be flexible, to be able to change and to evolve. The rationale for grid evolution is the current rapid and increasing advances in both software and hardware. Evolution means adding or removing capabilities. This research defines grid evolution as adding new functions and/or equipment and removing unusable resources that affect the performance of some nodes. This thesis produces a new technique for grid evolution, allowing it to be seamless and to operate at run time. Within grid computing, evolution is an integration of software and hardware and can be of two distinct types, external and internal. Internal evolution occurs inside the grid boundary by migrating special resources such as application software from node to node inside the grid. While external evolution occurs between grids. This thesis develops a framework for grid evolution that insulates users from the complexities of grids. This framework has at its core a resource broker together with a grid monitor to cope with internal and external evolution, advance reservation, fault tolerance, the monitoring of the grid environment, increased resource utilisation and the high availability of grid resources. The starting point for the present framework of grid evolution is when the grid receives a job whose requirements do not exist on the required node which triggers grid evolution. If the grid has all the requirements scattered across its nodes, internal evolution enabling the grid to migrate the required resources to the required node in order to satisfy job requirements ensues, but if the grid does not have these resources, external evolution enables the grid either to collect them from other grids (permanent evolution) or to send the job to other grids for execution (just in time) evolution. Finally a simulation tool called (EVOSim) has been designed, developed and tested. It is written in Oracle 10g and has been used for the creation of four grids, each of which has a different setup including different nodes, application software, data and polices. Experiments were done by submitting jobs to the grid at run time, and then comparing the results and analysing the performance of those grids that use the approach of evolution with those that do not. The results of these experiments have demonstrated that these features significantly improve the performance of grid environments and provide excellent scheduling results, with a decreasing number of rejected jobs

    Überblick zur Softwareentwicklung in Wissenschaftlichen Anwendungen

    Get PDF
    Viele wissenschaftliche Disziplinen müssen heute immer komplexer werdende numerische Probleme lösen. Die Komplexität der benutzten wissenschaftlichen Software steigt dabei kontinuierlich an. Diese Komplexitätssteigerung wird durch eine ganze Reihe sich ändernder Anforderungen verursacht: Die Betrachtung gekoppelter Phänomene gewinnt Aufmerksamkeit und gleichzeitig müssen neue Technologien wie das Grid-Computing oder neue Multiprozessorarchitekturen genutzt werden, um weiterhin in angemessener Zeit zu Berechnungsergebnissen zu kommen. Diese Fülle an neuen Anforderungen kann nicht mehr von kleinen spezialisierten Wissenschaftlergruppen in Isolation bewältigt werden. Die Entwicklung wissenschaftlicher Software muss vielmehr in interdisziplinären Gruppen geschehen, was neue Herausforderungen in der Softwareentwicklung induziert. Ein Paradigmenwechsel zu einer stärkeren Separation von Verantwortlichkeiten innerhalb interdisziplinärer Entwicklergruppen ist bis jetzt in vielen Fällen nur in Ansätzen erkennbar. Die Kopplung partitioniert durchgeführter Simulationen physikalischer Phänomene ist ein wichtiges Beispiel für softwaretechnisch herausfordernde Aufgaben im Gebiet des wissenschaftlichen Rechnens. In diesem Kontext modellieren verschiedene Simulationsprogramme unterschiedliche Teile eines komplexeren gekoppelten Systems. Die vorliegende Arbeit gibt einen Überblick über Paradigmen, die darauf abzielen Softwareentwicklung für Berechnungsprogramme verlässlicher und weniger abhängig voneinander zu machen. Ein spezielles Augenmerk liegt auf der Entwicklung gekoppelter Simulationen.Fields of modern science and engineering are in need of solving more and more complex numerical problems. The complexity of scientific software thereby rises continuously. This growth is caused by a number of changing requirements. Coupled phenomena gain importance and new technologies like the computational Grid, graphical and heterogeneous multi-core processors have to be used to achieve high-performance. The amount of additional complexity can not be handled by small groups of specialised scientists. The interdiciplinary nature of scientific software thereby presents new challanges for software engineering. A paradigm shift towards a stronger separation of concerns becomes necessary in the development of future scientific software. The coupling of independently simulated physical phenomena is an important example for a software-engineering concern in the domain of computational science. In this context, different simulation-programs model only a part of a more complex coupled system. The present work gives overview on paradigms which aim at making software-development in computational sciences more reliable and less interdependent. A special focus is put on the development of coupled simulations
    corecore