109,079 research outputs found

    Review of Life Cycle Assessment in Agro-Chemical Processes

    Get PDF
    Life Cycle Assessment (LCA) is a method used to evaluate the potential impacts on the environment of a product, process, or activity throughout its life cycle. Today’s LCA users are a mixture of individuals with skills in different disciplines who want to evaluate their products, processes, or activities in a life cycle context. This study attempts to present some of the LCA studies on agro-chemical processes, recent advances in LCA and their application on food products and non-food products. Due to the recent development of LCA methodologies and dissemination programs by international and local bodies, use of LCA is rapidly increasing in agricultural and industrial products. The literatures suggest that LCA coupled with other environmental approaches provides much more reliable and comprehensive information to environmentally conscious policy makers, producers, and consumers in selecting sustainable products and production processes. For this purpose, a field study of LCA of biodiesel from Jatropha curcas has been taken as an example in the study. In the past, LCA has been applied primarily to products but recent literature suggests that it has also the potential as an analysis and design tool for processes and services. In general, all primary industries use energy and water resources and emit pollutants gases. LCA is a method to report on and analyze these resource issues across the life cycle of agro-chemical processes. This review has the importance as a first part of a research project to develop a life cycle assessment methodology for agro-chemical industries. It presents the findings of a literature review that focuses on LCA of agriculture and chemical engineering literatur

    Incorporating LCA Method into Asset and Facility Life Cycle Management

    Get PDF
    With the increasing awareness of sustainable development, incorporation of potential environmental impact into the consideration of asset and facility life cycle management is attracting increasing attention. On the one hand, businesses now widely recognize the needs to actively engage in the sustainability arena. On the other hand, companies are now also increasingly accountable for their impacts on the society, environment and economy. This paper presents an initial framework that takes account of sustainability consequences of the products into asset and facility life cycle management. It is shown that major physical assets and facilities in different areas/sectors may have quite different behaviour, thus requiring the uses of different high-level criteria/factors. The evaluation process to incorporate the environmental LCA concept into asset life cycle management is also developed and discussed

    An application of hybrid life cycle assessment as a decision support framework for green supply chains

    Get PDF
    In an effort to achieve sustainable operations, green supply chain management has become an important area for firms to concentrate on due to its inherent involvement with all the processes that provide foundations to successful business. Modelling methodologies of product supply chain environmental assessment are usually guided by the principles of life cycle assessment (LCA). However, a review of the extant literature suggests that LCA techniques suffer from a wide range of limitations that prevent a wider application in real-world contexts; hence, they need to be incorporated within decision support frameworks to aid environmental sustainability strategies. Thus, this paper contributes in understanding and overcoming the dichotomy between LCA model development and the emerging practical implementation to inform carbon emissions mitigation strategies within supply chains. Therefore, the paper provides both theoretical insights and a practical application to inform the process of adopting a decision support framework based on a LCA methodology in a real-world scenario. The supply chain of a product from the steel industry is considered to evaluate its environmental impact and carbon ‘hotspots’. The study helps understanding how operational strategies geared towards environmental sustainability can be informed using knowledge and information generated from supply chain environmental assessments, and for highlighting inherent challenges in this process

    Standardization Framework for Sustainability from Circular Economy 4.0

    Get PDF
    The circular economy (CE) is widely known as a way to implement and achieve sustainability, mainly due to its contribution towards the separation of biological and technical nutrients under cyclic industrial metabolism. The incorporation of the principles of the CE in the links of the value chain of the various sectors of the economy strives to ensure circularity, safety, and efficiency. The framework proposed is aligned with the goals of the 2030 Agenda for Sustainable Development regarding the orientation towards the mitigation and regeneration of the metabolic rift by considering a double perspective. Firstly, it strives to conceptualize the CE as a paradigm of sustainability. Its principles are established, and its techniques and tools are organized into two frameworks oriented towards causes (cradle to cradle) and effects (life cycle assessment), and these are structured under the three pillars of sustainability, for their projection within the proposed framework. Secondly, a framework is established to facilitate the implementation of the CE with the use of standards, which constitute the requirements, tools, and indicators to control each life cycle phase, and of key enabling technologies (KETs) that add circular value 4.0 to the socio-ecological transition

    Examining green production and its role within the competitive strategy of manufacturers

    Get PDF
    Purpose: This paper reviews current literature and contributes a set of findings that capture the current state-of-the-art of the topic of green production. Design/methodology/approach: A literature review to capture, classify and summarize the main body of knowledge on green production and, translate this into a form that is readily accessible to researchers and practitioners in the more mainstream operations management community. Findings: The existing knowledge base is somewhat fragmented. This is a relatively unexplored topic within mainstream operations management research and one which could provide rich opportunities for further exploration. Originality/value: This paper sets out to review current literature, from a more conventional production operations perspective, and contributes a set of findings that capture the current state-of-the-art of this topic

    Life-cycle assessment of buildings: a Review

    Get PDF
    Life-Cycle Assessment (LCA) is one of various management tools for evaluating environmental concerns. This paper reviews LCA from a buildings perspective. It highlights the need for its use within the building sector, and the importance of LCA as a decision making support tool. It discusses LCA methodologies and applications within the building sector, reviewing some of the life-cycle studies applied to buildings or building materials and component combinations within the last fifteen years in Europe and the United States. It highlights the problems of a lack of an internationally comparable and agreed data inventory and assessment methodology which hinder the application of LCA within the building industry. It identifies key areas for future research as (i) the whole process of construction, (ii) the relative weighting of different environmental impacts and (iii) applications in developing countries

    Eco‐Holonic 4.0 Circular Business Model to  Conceptualize Sustainable Value Chain Towards  Digital Transition 

    Get PDF
    The purpose of this paper is to conceptualize a circular business model based on an Eco-Holonic Architecture, through the integration of circular economy and holonic principles. A conceptual model is developed to manage the complexity of integrating circular economy principles, digital transformation, and tools and frameworks for sustainability into business models. The proposed architecture is multilevel and multiscale in order to achieve the instantiation of the sustainable value chain in any territory. The architecture promotes the incorporation of circular economy and holonic principles into new circular business models. This integrated perspective of business model can support the design and upgrade of the manufacturing companies in their respective industrial sectors. The conceptual model proposed is based on activity theory that considers the interactions between technical and social systems and allows the mitigation of the metabolic rift that exists between natural and social metabolism. This study contributes to the existing literature on circular economy, circular business models and activity theory by considering holonic paradigm concerns, which have not been explored yet. This research also offers a unique holonic architecture of circular business model by considering different levels, relationships, dynamism and contextualization (territory) aspects

    On the role of Prognostics and Health Management in advanced maintenance systems

    Get PDF
    The advanced use of the Information and Communication Technologies is evolving the way that systems are managed and maintained. A great number of techniques and methods have emerged in the light of these advances allowing to have an accurate and knowledge about the systems’ condition evolution and remaining useful life. The advances are recognized as outcomes of an innovative discipline, nowadays discussed under the term of Prognostics and Health Management (PHM). In order to analyze how maintenance will change by using PHM, a conceptual model is proposed built upon three views. The model highlights: (i) how PHM may impact the definition of maintenance policies; (ii) how PHM fits within the Condition Based Maintenance (CBM) and (iii) how PHM can be integrated into Reliability Centered Maintenance (RCM) programs. The conceptual model is the research finding of this review note and helps to discuss the role of PHM in advanced maintenance systems.EU Framework Programme Horizon 2020, 645733 - Sustain-Owner - H2020-MSCA-RISE-201
    • 

    corecore